SPHINX

PYTHON DOCUMENTATION GENERATOR

Sphinx Documentation
Release 4.0.0+

Georg Brandl

Feb 17, 2021

1 Using Sphinx
Getting Started L e e e e e e e e e

1.1

1.2

1.3

Setting

Defining document Structure e e e e e e e
Adding content L e e e e e e e e e e e e e e e e

Runnin

Documenting objects e e e e e

Basic ¢

Autodoc . .. L e e e e e e e e
IntersphinXx o e e e e e e e e e e e
More topics tobe covered oL e e e e e e e e e e e e
Installing Sphinx o L e e e e e

CONTENTS

up the documentation SOUICES v v v vt i et e e e e e e e

gthebuild e e

onfiguration L L e e e e e e e e e

O 00000 I I I VI I I 1AW B LWWWN -

OVEIVIEW o o ot e e e e e e e e e e e e e e e
Linux e e e e
Debian/Ubuntu e
RHEL, CentOS e e e e e e
Other distributions e e e e e e e e e e e e
macOS . . . e e e e e e e e e
Homebrew e e e e
MacPorts e e e e e e e e e
Anaconda L e e e e e e e e e e
Windows L e e e e e e e e e e
Installation from PyPL
Docker e e e e e e
Installation from source L. e e e e e e e e
reStructuredTeXt L e e e e e e e e e e e 9
reStructuredText Primer L. e e e e e e 10
Paragraphs L e e e e 10
Inlinemarkup e 10
Lists and Quote-like blocks L 10
Literal blocks e 12
Doctest blocks L e e 12
Tables e e e e e e 12
Hyperlinks o e e e e 13
SECHiONS o e e e e e e e e e e e 13
Field Lists e e 14
Roles e e 14
Explicit Markup o o e e e e e e e 15
Directives e e e e e e e e e 15
Images e e e e 17

1.4

1.5

Footnotes e e e e 17

Citations e 18
Substitutions L. e e e 18
Comments e e e e 18
HTML Metadata 0 e e e e e e e e e 19
Sourceencoding e 19
Gotchas e 19
Roles o o e 20
Cross-referencing syntax L e 20
Math 23
Other semanticmarkup L 24
Substitutions e 26
Directives o e e 26
Tableof contents e e e 26
Paragraph-level markup oL o 30
Showing code examples L e e e 31
GloSSArY o o e e e e 36
Meta-information markup L. e e e 37
Index-generating markup L. 38
Including content based ontags Lo e 39
Tables e e e e 40
Math . . . e e 41
Grammar production displays e e e 42
Field Lists o o e 43
File-wide metadata L e 43
Special metadata fields oL 43
Domains L e 44
BasicMarkup e e e e e 45
The Python Domain e e e e 46
The CDomain e e e 53
The C++Domain o e 56
The Standard Domain Lo 68
The JavaScript Domain e e e e e e 69
The reStructuredText domain L 70
The Math Domain e 71
More domainso e e e e 72
Markdown e e e e e e 72
Configuration L e e e e 72
Configuration e e e e e e e e e e e e e 73
Projectinformation L. e e e e e e e 73
General configuration L e 74
Options for internationalization oL 81
Options for Math e 85
Options for HTML output o o e e e e e e e e e e e e e e e e 85
Options for Single HTML output i e e e e e e e e e e e e e e e 92
Options for HTML help output e e 93
Options for Apple Helpoutput e 93
Options forepub output e e 95
Options for LaTeX output o . i it e e e e e e e e e e e e e e e e 98
Options for teXt OULPUL o v o o e et e e e e e e e e e e e e e e e e e e e 101
Options for manual page output L e e e e e e 101
Options for Texinfo output L e 102
Options for QtHelp output e 103
Options for the linkcheck builder 103

1.6

1.7

1.8

1.9

1.10

Options for the XML builder e 105

Options for the C domain e e e e e e e e e e 105
Options for the C++domain L e e e 106
Example of configurationfile o oL o o 106
Builders L e e e e 113
Serialization builder details L 120
EXtensions e e e 121
Built-in extensions L. e e e e e 121
sphinx.ext.autodoc — Include documentation from docstrings 121
sphinx.ext.autosectionlabel — Allow reference sections using its title 131
sphinx.ext.autosummary — Generate autodoc summaries 132
sphinx.ext.coverage — Collect doc coverage statso oo 136
sphinx.ext.doctest — Test snippets in the documentation 137
sphinx.ext.duration — Measure durations of Sphinx processing 142
sphinx.ext.extlinks — Markup to shorten external links 142
sphinx.ext.githubpages — Publish HTML docs in GitHub Pages 143
sphinx.ext.graphviz — Add Graphviz graphs 143
sphinx.ext.ifconfig — Include content based on configuration 146
sphinx.ext.imgconverter — A reference image converter using Imagemagick 146
sphinx.ext.inheritance_diagram — Include inheritance diagrams 147
sphinx.ext.intersphinx — Link to other projects’ documentation 150
sphinx.ext.linkcode — Add external links to sourcecode 152
Math support for HTML outputs in Sphinx 153
sphinx.ext.napoleon — Support for NumPy and Google style docstrings 156
sphinx.ext.todo — Support for todoitems 165
sphinx.ext.viewcode — Add links to highlighted source code 166
Third-party eXtensions i e e e e e e e 167
Where to put your own extensions?o e e e e e e e 168
HTML Theming o o o e 168
Builders e 168
Themes o e e e e e e 168
Usingatheme e e e 168
Builtinthemes L e 169
Third Party Themes e e e e e 174
Internationalization L e e 174
Sphinx internationalization detailso Lo o 175
Translating with sphinx-intl0 0oL 175
Quick guide L e 175
Translating L e e e e e e e e e e e e e 177
Update your po filesby new potfiles 177
Using Transifex service for team translation 177
Contributing to Sphinx reference translation 0oL, 178
Setuptools integration L e 179
Using setuptools integration L e e e e e e e 179
Options for setuptools integration L e e e e e 180
Sphinx Web Support L e e e e e e e 181
Web Support Quick Start e 181
Building Documentation Data L L 181
Integrating Sphinx Documents Into Your Webapp 182
Performing Searches e e 184
Comments & Proposals e e e 184
Comment Moderation L e 185
The WebSupport Class o e 186
Methods L L e e e 186

Search Adapters L e e e e e e e e e e 189

Methods L 189

Storage Backends L e e e e 190
Methods L e e 191

2 Extending Sphinx 193
2.1 Developing extensions OVeIVIEW« . o ot v it e e e e e e e e 193
Make an extension depend on another extensiono 193

2.2 Extension tutorialS Ll e e e e e e e e e 193
Developing a “Hello world” extension i 194
OVEIVIEW o ot o e e e 194

Prerequisites L e e e e e e e e e 194

Writing the extension L. L e 194

Using the extension L e 196
Furtherreading e 197

Developing a “TODO” eXtension v v v v i i e e e e e e e e e e e e e 197
OVEIVIEW o o oo e 197

Prerequisites e e 197

Writing the extension oL e 198

Using the exXtension ittt e e e e e e e e e 205
Furtherreading e e e e e e 206

Developing a “recipe” eXtension v vt it e e e e e e e e e e e e e e e 206
OVEIVIEW o o o o e e e e 207

Prerequisites e 207

Writing the extension L e e 207

Using the extension ittt e e e e e e e e 214
Furtherreading o e e e e e 215

2.3 Configuring builders L e e e e e e 215
Discover builders by entry point L o e 215

24 HTML theme development. i e 216
Creating themes L e e e 216
Distribute your theme as a Python package, 217
Templating L e e e e e e e e 217

Static templates e e e 218

Use custom page metadata in HTML templates 218

Defining custom template functionso oL 218

Add your own static files tothe build assets 219

Inject JavaScript based on user configuration oo 219

3 Man Pages 221
3.1 Core Applications e e 221
sphinx-quickstart L e e e 221
SYNopsis e e e 221

Description e e e e e e 221

OPLioNS o o e e e e 221

Seealso o 223

sphinx-build e e e e e e e e 223
SYNOPSIS . . o o e e e e e e e e e e e 223

Description oL e 224

OpLoONS o e e e e e e e e 224

Environment Variables 226

Deprecation Warnings o e e e e e e e e e e 227

Seealso L 227

3.2 Additional Applications e e 227

sphinx-apidoc,
Synopsis
Description 0.
Options
Environment
Seealso
sphinx-autogen
Synopsis
Description
Options
Example
Seealso

4 Templating

4.1
4.2
4.3

Do I need to use Sphinx’s templates to produce HTML?

Jinja/Sphinx Templating Primer
Working with the builtin templates
Blocks
Configuration Variables
Helper Functions
Global Variables

5 LaTeX customization

5.1
52
53

The latex_elements configuration setting
The sphinxsetup configuration setting
LaTeX macros and environments
Macros

6 Developing extensions for Sphinx

6.1
6.2
6.3
6.4

Important objects oL
Build Phases
Extensionmetadata
APIs used for writing extensions
Application API
Extensionsetup
Emittingevents
Sphinx runtime information
Sphinx coreevents
Checking the Sphinx version
The Configobject.
The template bridge
Exceptions
Project APo
Build environment API. oL
Builder APT. oL

Roles
Directives
Domain API
Python Domain
Parser API,

233
233
233
234
234
235
236
236

239
239
245
249
249
251
252

253
253
254
255
255
255
255
267
268
268
272
272
272
273
273
274
275
277
277
277
277
280
283
284

7

10

Other paragraph-level nodes
New inlinenodes o . L e e e
Special nodes L. e e e
Logging APL L e e e e e e
I18n APL . o o e e
Extension internationalization (i/8n) and localization (//0n) using il8n API
Utlities o o e e e e e e e
Base classes forcomponentsol o e e e
Utility components v v v v i i e e e e e e e e e e e e e e e e e e e
Deprecated APIs L e e e e e e e

Sphinx internals
7.1 Contributing to SphinX e e e e e e e e e e e
Gettinghelp oL e e e e e e
Bug Reports and Feature Requests L o
Writingcode L e e e e e e
Getting started L. L e e e e e e e e e
Coding style o e e e e e e e e e e e
Unittests o v i o e e e e e e e e
Writing documentation L. Lo L e e e
Translations L e e e e e e e e
Debugging tips e e e e e e
7.2 Sphinx’s 1elease ProCeSS v v v v v v i e
Branch Model e
Deprecatingafeature L e e e
Deprecation policy L e e
Deprecation warningso Lo e e e e e e e e e
Release procedures L e e e
7.3 Organization of the Sphinx project e e e
Core developers o v i e e e e e e e e e
Guidelines e
Membership e e
Other contributors o L e e e e e
7.4 Sphinx Code of Conduct o . e e e e e e e e e
7.5 Sphinx authors e e e e e e e e e

Sphinx FAQ

81 Howdol... . . e e

8.2 Using Sphinx with... L L e e e e e

83 Sphinx vs. Docutils e

84 Epubinfo e e

85 Texinfoinfo L L e e
Displaying Links e e e e e e e e e e e e
NOES . . v o o e e e e e e

Glossary

Changelog

10.1 Release 4.0.0 (indevelopment) L e e e e e
10.2 Release 3.5.2 (indevelopment) e
10.3 Release 3.5.1 (released Feb 16,2021) e e
10.4 Release 3.5.0 (released Feb 14, 2021) e e e

309
309
309
309
310
310
311
311
312
313
313
314
314
314
314
315
315
315
315
315
316
316
316
317

321
321
321
323
323
324
325
325

327

vi

10.5 Release 3.4.3 (released Jan 08, 2021) 0 e e 334

10.6 Release 3.4.2 (released Jan 04, 2021) o e e e e 334
10.7 Release 3.4.1 (released Dec 25,2020) e e e e 335
10.8 Release 3.4.0 (released Dec 20, 2020) o e 335
10.9 Release 3.3.1 (released Nov 12,2020) o i i it e e e e 337
10.10 Release 3.3.0 (released Nov 02, 2020) 0 i i e e 337
10.11 Release 3.2.1 (released Aug 14,2020) o 0 i i i e e e e e e 339
10.12 Release 3.2.0 (released Aug 08,2020) o o i e e e e e 339
10.13 Release 3.1.2 (released Jul 05, 2020) e e e e e 342
10.14 Release 3.1.1 (released Jun 14,2020) i i i e 342
10.15 Release 3.1.0 (released Jun 08, 2020) e 343
10.16 Release 3.0.4 (released May 27,2020) o v v i i i e e e e e e e e e e e e 346
10.17 Release 3.0.3 (released Apr 26, 2020) i i i e e e e e e e e 346
10.18 Release 3.0.2 (released Apr 19,2020) e e 346
10.19 Release 3.0.1 (released Apr 11,2020) o o o e e 347
10.20 Release 3.0.0 (released Apr 06,2020) e 347
10.21 Release 2.4.4 (released Mar 05, 2020) o i 0 i e e e e 351
10.22 Release 2.4.3 (released Feb 22, 2020) o 0 i e e e 351
10.23 Release 2.4.2 (released Feb 19,2020) e e e e 352
10.24 Release 2.4.1 (released Feb 11,2020) i e 352
10.25 Release 2.4.0 (released Feb 09, 2020) e 352
10.26 Release 2.3.1 (released Dec 22, 2019) e 355
10.27 Release 2.3.0 (released Dec 15,2019) e 355
10.28 Release 2.2.2 (released Dec 03, 2019) e e 357
10.29 Release 2.2.1 (released Oct 26, 2019) i e e 357
10.30 Release 2.2.0 (released Aug 19,2019) o . e 357
10.31 Release 2.1.2 (released Jun 19,2019) e e e e 359
10.32 Release 2.1.1 (released Jun 10,2019) e 359
10.33 Release 2.1.0 (released Jun 02, 2019) e e 359
10.34 Release 2.0.1 (released Apr 08,2019) e 362
10.35 Release 2.0.0 (released Mar 29,2019) e 363
10.36 Release 1.8.5 (released Mar 10,2019) i i i e e 369
10.37 Release 1.8.4 (released Feb 03,2019) 369
10.38 Release 1.8.3 (released Dec 26, 2018) o i i e e e 370
10.39 Release 1.8.2 (released Nov 11,2018) e e e e e e e e 371
10.40 Release 1.8.1 (released Sep 22,2018) L 371
10.41 Release 1.8.0 (released Sep 13,2018) o o o i e 372
10.42 Release 1.7.9 (released Sep 05, 2018) o o o e 378
10.43 Release 1.7.8 (released Aug 29,2018) e e e 378
10.44 Release 1.7.7 (released Aug 19,2018) e e e 379
10.45 Release 1.7.6 (released Jul 17,2018) i i e e 379
10.46 Release 1.7.5 (released May 29, 2018) o o i i e e 380
10.47 Release 1.7.4 (released Apr 25,2018) e 381
10.48 Release 1.7.3 (released Apr 23,2018) o o e 381
10.49 Release 1.7.2 (released Mar 21, 2018) o o i e e e 382
10.50 Release 1.7.1 (released Feb 23, 2018) e e e e e 382
10.51 Release 1.7.0 (released Feb 12,2018) e 383
10.52 Release 1.6.7 (released Feb 04, 2018) e e e 387
10.53 Release 1.6.6 (released Jan 08, 2018) e 388
10.54 Release 1.6.5 (released Oct 23, 2017) o o i 0 i i e e e e e 388
10.55 Release 1.6.4 (released Sep 26, 2017) o o i e e e e 389
10.56 Release 1.6.3 (released Jul 02, 2017) o @ i i e e e e e e 390
10.57 Release 1.6.2 (released May 28, 2017) o o i i i e 391
10.58 Release 1.6.1 (released May 16,2017) oo it e 391

vii

10.59 Release 1.6 (unreleased) o . i i i e e e e e e e e e e e 396

10.60 Release 1.5.6 (released May 15,2017) o o 0 i i i i i e e e e e e e 396
10.61 Release 1.5.5 (released Apr 03, 2017) o o o i i e e e e e 397
10.62 Release 1.5.4 (released Apr 02,2017)« o L o o i i e e e 397
10.63 Release 1.5.3 (released Feb 26,2017) e 398
10.64 Release 1.5.2 (released Jan 22, 2017) o i i e e e 398
10.65 Release 1.5.1 (released Dec 13,2016) e e 400
10.66 Release 1.5 (released Dec 5,2016) i e e e e e 400
10.67 Release 1.4.9 (released Nov 23,2016) o i i i it e e e e e e 406
10.68 Release 1.4.8 (released Oct 1,2016) i i e 406
10.69 Release 1.4.7 (released Oct 1,2016) e 406
10.70 Release 1.4.6 (released Aug 20,2016) o i e 407
10.71 Release 1.4.5 (released Jul 13,2016) o i i i e e e e 408
10.72 Release 1.4.4 (released Jun 12,2016) e e e e 409
10.73 Release 1.4.3 (released Jun 5,2016) i i e 409
10.74 Release 1.4.2 (released May 29,2016) o . i i i i e e 410
10.75 Release 1.4.1 (released Apr 12,2016) o o o e 411
10.76 Release 1.4 (released Mar 28, 2016) i 0 i i i e e e e 412
10.77 Release 1.3.6 (released Feb 29, 2016) i e e e 416
10.78 Release 1.3.5 (released Jan 24,2016) i i e 416
10.79 Release 1.3.4 (released Jan 12,2016) o i i i i e 417
10.80 Release 1.3.3 (released Dec 2,2015) e 418
10.81 Release 1.3.2 (released Nov 29, 2015) o o i i e e e 418
10.82 Release 1.3.1 (released Mar 17,2015) o e e e 420
10.83 Release 1.3 (released Mar 10, 2015) e e e 420
10.84 Release 1.3b3 (released Feb 24,2015) e 421
10.85 Release 1.3b2 (released Dec 5,2014) e 423
10.86 Release 1.3b1 (released Oct 10,2014) e e e e 423
10.87 Release 1.2.3 (released Sep 1,2014) o e e e 427
10.88 Release 1.2.2 (released Mar 2, 2014) e e e e e e 428
10.89 Release 1.2.1 (released Jan 19,2014) i e 428
10.90 Release 1.2 (released Dec 10,2013) 0 e 430
10.91 Release 1.2 beta3 (released Oct 3,2013) e 430
10.92 Release 1.2 beta2 (released Sep 17,2013) o o i e e e e 431
10.93 Release 1.2 betal (released Mar 31, 2013) i i e e e 432
10.94 Release 1.1.3 (Mar 10,2012) o 0 e e e e e e e 436
10.95 Release 1.1.2 (Nov 1, 2011) — 1.1.1 is a silly version number anyway! 437
10.96 Release 1.1.1 (Nov 1,2011) o o e e e e e e e e e e 437
10.97 Release 1.1 (Oct 9,2011) 0 e 437
10.98 Release 1.0.8 (Sep 23,2011) o o v i i e e e e e 439
10.99 Release 1.0.7 (Jan 15, 2011) 0 o e e e e e e e 440
10.100Release 1.0.6 (Jan 04, 2011) e e 441
10.101Release 1.0.5 (Nov 12,2010) o . e e e e 441
10.102Release 1.0.4 (Sep 17,2010) o o o o o e 441
10.103Release 1.0.3 (Aug 23,2010) o o v i e e e e e 442
10.104Release 1.0.2 (Aug 14,2010) o 0o e e e e 442
10.105Release 1.0.1 (Jul 27,2010) o o it e e e e e e e e e e e e e 442
10.10Release 1.0 (Jul 23,2010) o e 443
10.107Previous VEISIONS v v v v v e 445
11 Projects using Sphinx 447
11.1 Documentation using the alabaster theme 447
11.2 Documentation using the classictheme L oo 448
11.3 Documentation using the sphinxdoctheme 451

viii

11.4 Documentation using the nature theme L 452

11.5 Documentation using another builtintheme 453
11.6 Documentation using sphinx_rtd_theme 453
11.7 Documentation using sphinx_bootstrap_theme 458
11.8 Documentation using a custom theme or integrated in a website 459
11.9 Homepages and other non-documentation sites Lo 462
11.10 Books produced using Sphinx e e e e 463
11.11 Theses produced using SphinX e e e 464
11.12 Projects integrating Sphinx functionality 464
Python Module Index 465
Index 467

CHAPTER
ONE

USING SPHINX

This guide serves to demonstrate how one can get started with Sphinx and covers everything from installing Sphinx
and configuring your first Sphinx project to using some of the advanced features Sphinx provides out-of-the-box. If
you are looking for guidance on extending Sphinx, refer to Extending Sphinx.

1.1 Getting Started

Sphinx is a documentation generator or a tool that translates a set of plain text source files into various output formats,
automatically producing cross-references, indices, etc. That is, if you have a directory containing a bunch of reStruc-
turedText or Markdown documents, Sphinx can generate a series of HTML files, a PDF file (via LaTeX), man pages
and much more.

Sphinx focuses on documentation, in particular handwritten documentation, however, Sphinx can also be used to gen-
erate blogs, homepages and even books. Much of Sphinx’s power comes from the richness of its default plain-text
markup format, reStructuredText, along with it’s significant extensibility capabilities.

The goal of this document is to give you a quick taste of what Sphinx is and how you might use it. When you’re
done here, you can check out the installation guide followed by the intro to the default markup format used by Sphinx,
reStucturedText.

For a great “introduction” to writing docs in general — the whys and hows, see also Write the docs®, written by Eric
Holscher.

Setting up the documentation sources

The root directory of a Sphinx collection of plain-text document sources is called the source directory. This directory
also contains the Sphinx configuration file conf.py, where you can configure all aspects of how Sphinx reads your
sources and builds your documentation.”

Sphinx comes with a script called sphinx-quickstart that sets up a source directory and creates a default conf. py
with the most useful configuration values from a few questions it asks you. To use this, run:

$ sphinx-quickstart

3 http://www.writethedocs.org/guide/writing/beginners- guide-to-docs/
7 This is the usual layout. However, conf.py can also live in another directory, the configuration directory. Refer to the sphinx-build man page
for more information.

http://www.writethedocs.org/guide/writing/beginners-guide-to-docs/

Sphinx Documentation, Release 4.0.0+

Defining document structure

Let’s assume you’ve run sphinx-quickstart. It created a source directory with conf.py and a master document,
index.rst. The main function of the master document is to serve as a welcome page, and to contain the root of the
“table of contents tree” (or toctree). This is one of the main things that Sphinx adds to reStructuredText, a way to
connect multiple files to a single hierarchy of documents.

reStructuredText directives
toctree is a reStructuredText directive, a very versatile piece of markup. Directives can have arguments, options
and content.

Arguments are given directly after the double colon following the directive’s name. Each directive decides whether
it can have arguments, and how many.

Options are given after the arguments, in form of a “field list”. The maxdepth is such an option for the toctree
directive.

Content follows the options or arguments after a blank line. Each directive decides whether to allow content, and
what to do with it.

A common gotcha with directives is that the first line of the content must be indented to the same level as the
options are.

The toctree directive initially is empty, and looks like so:

toctree::
:maxdepth: 2

You add documents listing them in the content of the directive:

toctree::
:maxdepth: 2

usage/installation
usage/quickstart

This is exactly how the toctree for this documentation looks. The documents to include are given as document names,
which in short means that you leave off the file name extension and use forward slashes (/) as directory separators.

1 . .
- I> Read more about the toctree directive.

You can now create the files you listed in the toctree and add content, and their section titles will be inserted (up to
the maxdepth level) at the place where the toctree directive is placed. Also, Sphinx now knows about the order and
hierarchy of your documents. (They may contain toctree directives themselves, which means you can create deeply
nested hierarchies if necessary.)

2 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Adding content

In Sphinx source files, you can use most features of standard reStructuredText. There are also several features added
by Sphinx. For example, you can add cross-file references in a portable way (which works for all output types) using
the ref role.

For an example, if you are viewing the HTML version, you can look at the source for this document — use the “Show
Source” link in the sidebar.

Todo: Update the below link when we add new guides on these.

.":JL\,} See reStructuredText for a more in-depth introduction to reStructuredText, including markup added by Sphinx.
Running the build

Now that you have added some files and content, let’s make a first build of the docs. A build is started with the
sphinx-build program:

$ sphinx-build -b html sourcedir builddir

where sourcedir is the source directory, and builddir is the directory in which you want to place the built documentation.
The -b option selects a builder; in this example Sphinx will build HTML files.

;-;Jl}f Refer to the sphinx-build man page for all options that sphinx-build supports.

However, sphinx-quickstart script creates a Makefile and a make.bat which make life even easier for you. These
can be executed by running make with the name of the builder. For example.

$ make html

This will build HTML docs in the build directory you chose. Execute make without an argument to see which targets
are available.

How do I generate PDF documents?

make latexpdf runsthe LaTeX builder and readily invokes the pdfTeX toolchain for you.

Todo: Move this whole section into a guide on rST or directives

Documenting objects

One of Sphinx’s main objectives is easy documentation of objects (in a very general sense) in any domain. A domain
is a collection of object types that belong together, complete with markup to create and reference descriptions of these
objects.

The most prominent domain is the Python domain. For example, to document Python’s built-in function enumerate (),
you would add this to one of your source files.

1.1. Getting Started 3

Sphinx Documentation, Release 4.0.0+

. py:function:: enumerate(sequence[, start=0])

Return an iterator that yields tuples of an index and an item of the
sequence. (And so on.)

This is rendered like this:

enumerate (sequence [, start=0])
Return an iterator that yields tuples of an index and an item of the sequence. (And so on.)

The argument of the directive is the signature of the object you describe, the content is the documentation for it.
Multiple signatures can be given, each in its own line.

The Python domain also happens to be the default domain, so you don’t need to prefix the markup with the domain
name.

. function:: enumerate(sequence[, start=0])

does the same job if you keep the default setting for the default domain.

There are several more directives for documenting other types of Python objects, for example py: class or py :method.
There is also a cross-referencing role for each of these object types. This markup will create a link to the documentation
of enumerate().

The :py:func: enumerate’ function can be used for ...

And here is the proof: A link to enumerate().

Again, the py: can be left out if the Python domain is the default one. It doesn’t matter which file contains the actual
documentation for enumerate(); Sphinx will find it and create a link to it.

Each domain will have special rules for how the signatures can look like, and make the formatted output look pretty,
or add specific features like links to parameter types, e.g. in the C/C++ domains.

’J:} See Domains for all the available domains and their directives/roles.

i

Basic configuration

Earlier we mentioned that the conf.py file controls how Sphinx processes your documents. In that file, which is
executed as a Python source file, you assign configuration values. For advanced users: since it is executed by Sphinx,
you can do non-trivial tasks in it, like extending sys.path* or importing a module to find out the version you are
documenting.

The config values that you probably want to change are already put into the conf.py by sphinx-quickstart and
initially commented out (with standard Python syntax: a # comments the rest of the line). To change the default
value, remove the hash sign and modify the value. To customize a config value that is not automatically added by
sphinx-quickstart, just add an additional assignment.

Keep in mind that the file uses Python syntax for strings, numbers, lists and so on. The file is saved in UTF-8 by default,
as indicated by the encoding declaration in the first line.

'J:} See Configuration for documentation of all available config values.

[

4 https://docs.python.org/3/library/sys.html#sys.path

4 Chapter 1. Using Sphinx

https://docs.python.org/3/library/sys.html#sys.path

Sphinx Documentation, Release 4.0.0+

Todo: Move this entire doc to a different section

Autodoc

When documenting Python code, it is common to put a lot of documentation in the source files, in documentation
strings. Sphinx supports the inclusion of docstrings from your modules with an extension (an extension is a Python
module that provides additional features for Sphinx projects) called autodoc.

In order to use autodoc, you need to activate it in conf. py by putting the string ' sphinx.ext.autodoc' into the list
assigned to the extensions config value:

extensions = ['sphinx.ext.autodoc']

Then, you have a few additional directives at your disposal. For example, to document the function io.open(), reading
its signature and docstring from the source file, you’d write this:

autofunction:: io.open

You can also document whole classes or even modules automatically, using member options for the auto directives,
like

automodule:: io
:members:

autodoc needs to import your modules in order to extract the docstrings. Therefore, you must add the appropriate path
to sys.path’ in your conf.py.

Warning: autodoc imports the modules to be documented. If any modules have side effects on import, these
will be executed by autodoc when sphinx-build is run.

If you document scripts (as opposed to library modules), make sure their main routine is protected by a if
__name__ == '__main__"' condition.

.":JL\,} See sphinx.ext.autodoc for the complete description of the features of autodoc.

Todo: Move this doc to another section

Intersphinx

Many Sphinx documents including the Python documentation® are published on the Internet. When you want to make
links to such documents from your documentation, you can do it with sphinx.ext.intersphinx.

In order to use intersphinXx, you need to activate it in conf.py by putting the string 'sphinx.ext.intersphinx’
into the extensions list and set up the intersphinx_mapping config value.

For example, to link to io.open() in the Python library manual, you need to setup your intersphinx_mapping like:

intersphinx_mapping = {'python': ('https://docs.python.org/3"', None)}

3 https://docs.python.org/3/library/sys.html#sys.path
6 https://docs.python.org/3

1.1. Getting Started 5

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3

Sphinx Documentation, Release 4.0.0+

And now, you can write a cross-reference like :py: func: io.open’. Any cross-reference that has no matching target
in the current documentation set, will be looked up in the documentation sets configured in intersphinx_mapping
(this needs access to the URL in order to download the list of valid targets). Intersphinx also works for some other
domain's roles including :ref:, however it doesn’t work for :doc: as that is non-domain role.

.":J|>’ See sphinx.ext.intersphinx for the complete description of the features of intersphinx.

More topics to be covered

* Other extensions:

* Static files

* Selecting a theme

» Setuptools integration
o Templating

» Using extensions

* Writing extensions

1.2 Installing Sphinx

e Overview

e Linux

* macOS

* Windows

* Installation from PyPI
e Docker

* [Installation from source

Overview

Sphinx is written in Python® and supports Python 3.6+. It builds upon the shoulders of many third-party libraries such
as Docutils” and Jinja'?, which are installed when Sphinx is installed.

8 https://docs.python-guide.org/
9 https://docutils.sourceforge.io/
10 https://jinja.palletsprojects.com/

6 Chapter 1. Using Sphinx

https://docs.python-guide.org/
https://docutils.sourceforge.io/
https://jinja.palletsprojects.com/

Sphinx Documentation, Release 4.0.0+

Linux

Debian/Ubuntu

Install either python3-sphinx using apt-get:

$ apt-get install python3-sphinx

If it not already present, this will install Python for you.

RHEL, CentOS

Install python-sphinx using yum:

$ yum install python-sphinx

If it not already present, this will install Python for you.

Other distributions

Most Linux distributions have Sphinx in their package repositories. Usually the package is called python3-sphinx,
python-sphinx or sphinx. Be aware that there are at least two other packages with sphinx in their name: a speech
recognition toolkit (CMU Sphinx) and a full-text search database (Sphinx search).

macOS

Sphinx can be installed using Homebrew'!, MacPorts'?, or as part of a Python distribution such as Anaconda'®.

Homebrew

$ brew install sphinx-doc

For more information, refer to the package overview'*.

MacPorts

Install either python3x-sphinx using port:

$ sudo port install py38-sphinx

To set up the executable paths, use the port select command:

$ sudo port select --set python python38
$ sudo port select --set sphinx py38-sphinx

For more information, refer to the package overview'?.

T https://brew.sh/

12 https://www.macports.org/

13 https://www.anaconda.com/download/#macos

14 https://formulae.brew.sh/formula/sphinx-doc

15 https://www.macports.org/ports.php?by=library&substr=py38-sphinx

1.2. Installing Sphinx 7

https://brew.sh/
https://www.macports.org/
https://www.anaconda.com/download/#macos
https://formulae.brew.sh/formula/sphinx-doc
https://www.macports.org/ports.php?by=library&substr=py38-sphinx

Sphinx Documentation, Release 4.0.0+

Anaconda

$ conda install sphinx

Windows

Todo: Could we start packaging this?

Most Windows users do not have Python installed by default, so we begin with the installation of Python itself. To check
if you already have Python installed, open the Command Prompt (HWin-r and type cmd). Once the command prompt
is open, type python --version and press Enter. If Python is installed, you will see the version of Python printed
to the screen. If you do not have Python installed, refer to the Hitchhikers Guide to Python’s'® Python on Windows
installation guides. You must install Python 3'7.

Once Python is installed, you can install Sphinx using pip. Refer to the pip installation instructions below for more
information.

Installation from PyPI

Sphinx packages are published on the Python Package Index'®. The preferred tool for installing packages from PyPI is
pip. This tool is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command.

$ pip install -U sphinx

On Windows, you should open Command Prompt (EBWin-r and type cmd) and run the same command.

C:\> pip install -U sphinx

After installation, type sphinx-build --version on the command prompt. If everything worked fine, you will see
the version number for the Sphinx package you just installed.

Installation from PyPI also allows you to install the latest development release. You will not generally need (or want)
to do this, but it can be useful if you see a possible bug in the latest stable release. To do this, use the --pre flag.

$ pip install -U --pre sphinx

Docker

Docker images for Sphinx are published on the Docker Hub'®. There are two kind of images:
+ sphinxdoc/sphinx?°

« sphinxdoc/sphinx-latexpdf>!

16 https://docs.python-guide.org/

17 https://docs.python- guide.org/starting/install3/win/

18 https://pypi.org/project/Sphinx/

19 https://hub.docker.com/

20 https://hub.docker.com/repository/docket/sphinxdoc/sphinx

21 https://hub.docker.com/repository/docker/sphinxdoc/sphinx-latexpdf

8 Chapter 1. Using Sphinx

https://docs.python-guide.org/
https://docs.python-guide.org/starting/install3/win/
https://pypi.org/project/Sphinx/
https://hub.docker.com/
https://hub.docker.com/repository/docker/sphinxdoc/sphinx
https://hub.docker.com/repository/docker/sphinxdoc/sphinx-latexpdf

Sphinx Documentation, Release 4.0.0+

Former one is used for standard usage of Sphinx, and latter one is mainly used for PDF builds using LaTeX. Please
choose one for your purpose.

Note: sphinxdoc/sphinx-latexpdf contains TeXLive packages. So the image is very large (over 2GB!).

Hint: When using docker images, please use docker run command to invoke sphinx commands. For example, you
can use following command to create a Sphinx project:

$ docker run -it --rm -v /path/to/document:/docs sphinxdoc/sphinx sphinx-quickstart

And you can following command this to build HTML document:

$ docker run --rm -v /path/to/document:/docs sphinxdoc/sphinx make html

For more details, please read README file?” of docker images.

Installation from source

You can install Sphinx directly from a clone of the Git repository??. This can be done either by cloning the repo and
installing from the local clone, on simply installing directly via git.

$ git clone https://github.com/sphinx-doc/sphinx
$ cd sphinx
$ pip install .

$ pip install git+https://github.com/sphinx-doc/sphinx

You can also download a snapshot of the Git repo in either tar.gz** or zip> format. Once downloaded and extracted,
these can be installed with pip as above.

1.3 reStructuredText

reStructuredText (reST) is the default plaintext markup language used by both Docutils and Sphinx. Docutils provides
the basic reStructuredText syntax, while Sphinx extends this to support additional functionality.

The below guides go through the most important aspects of reST. For the authoritative reStructuredText reference, refer

to the docutils documentation?®.

22 https://hub.docker.com/repository/docker/sphinxdoc/sphinx
23 https://github.com/sphinx-doc/sphinx

24 https://github.com/sphinx-doc/sphinx/archive/master.tar.gz
25 https://github.com/sphinx-doc/sphinx/archive/master.zip

26 http://docutils.sourceforge.net/rst.html

1.3. reStructuredText 9

https://hub.docker.com/repository/docker/sphinxdoc/sphinx
https://github.com/sphinx-doc/sphinx
https://github.com/sphinx-doc/sphinx/archive/master.tar.gz
https://github.com/sphinx-doc/sphinx/archive/master.zip
http://docutils.sourceforge.net/rst.html

Sphinx Documentation, Release 4.0.0+

reStructuredText Primer

reStructuredText is the default plaintext markup language used by Sphinx. This section is a brief introduction to re-
StructuredText (reST) concepts and syntax, intended to provide authors with enough information to author documents
productively. Since reST was designed to be a simple, unobtrusive markup language, this will not take too long.

See also:

The authoritative reStructuredText User Documentation”’. The “ref” links in this document link to the description of
the individual constructs in the reST reference.

Paragraphs

The paragraph (ref?®) is the most basic block in a reST document. Paragraphs are simply chunks of text separated by
one or more blank lines. As in Python, indentation is significant in reST, so all lines of the same paragraph must be
left-aligned to the same level of indentation.

Inline markup

The standard reST inline markup is quite simple: use
* one asterisk: *text* for emphasis (italics),
* two asterisks: **text** for strong emphasis (boldface), and
* backquotes: " text " for code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters, they have to be
escaped with a backslash.

Be aware of some restrictions of this markup:
* it may not be nested,
* content may not start or end with whitespace: * text* is wrong,

* it must be separated from surrounding text by non-word characters. Use a backslash escaped space to work
around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

It is also possible to replace or expand upon some of this inline markup with roles. Refer to Roles for more information.

Lists and Quote-like blocks

List markup (ref?”) is natural: just place an asterisk at the start of a paragraph and indent properly. The same goes for
numbered lists; they can also be autonumbered using a # sign:

* This is a bulleted list.
It has two items, the second
item uses two lines.

1. This is a numbered list.
2. It has two items too.

(continues on next page)

27 http://docutils.sourceforge.net/rst.html
28 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#paragraphs
29 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#bullet-lists

10 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the parent list items by blank lines:

* this is
* a list

* with a nested list
* and some subitems

* and here the parent list continues

Definition lists (ref*”) are created as follows:

term (up to a line of text)
Definition of the term, which must be indented

and can even consist of multiple paragraphs

next term
Description.

Note that the term cannot have more than one line of text.

Quoted paragraphs (ref>!) are created by just indenting them more than the surrounding paragraphs.

Line blocks (ref*?) are a way of preserving line breaks:

| These lines are
| broken exactly like in
| the source file.

There are also several more special blocks available:
o field lists (ref>?, with caveats noted in Field Lists)
* option lists (ref**)
* quoted literal blocks (ref*)

doctest blocks (ref>®)

30 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#definition- lists

31 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#block-quotes

32 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#line-blocks

33 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#field-lists

34 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#option-lists

35 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#quoted- literal-blocks
36 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks

1.3. reStructuredText 11

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#line-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#option-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#quoted-literal-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks

Sphinx Documentation, Release 4.0.0+

Literal blocks

Literal code blocks (ref’’) are introduced by ending a paragraph with the special marker : :. The literal block must be
indented (and, like all paragraphs, separated from the surrounding ones by blank lines):

This is a normal text paragraph. The next paragraph is a code sample::

It is not processed in any way, except
that the indentation is removed.

It can span multiple lines.

This is a normal text paragraph again.

The handling of the : : marker is smart:
 If it occurs as a paragraph of its own, that paragraph is completely left out of the document.
« Ifitis preceded by whitespace, the marker is removed.
» Ifitis preceded by non-whitespace, the marker is replaced by a single colon.

That way, the second sentence in the above example’s first paragraph would be rendered as “The next paragraph is a
code sample:”.

Code highlighting can be enabled for these literal blocks on a document-wide basis using the highlight directive
and on a project-wide basis using the highlight_language configuration option. The code-block directive can be
used to set highlighting on a block-by-block basis. These directives are discussed later.

Doctest blocks

Doctest blocks (ref*®) are interactive Python sessions cut-and-pasted into docstrings. They do not require the /iteral
blocks syntax. The doctest block must end with a blank line and should not end with an unused prompt:

>> 1+ 1
2

Tables

For grid tables (ref*”), you have to “paint” the cell grid yourself. They look like this:

B o D o +
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+ + + + +
| body row 1, column 1 | column 2 | column 3 | column 4 |
B T e D o +
| body row 2 | | |

o o T o +

Simple tables (ref*") are easier to write, but limited: they must contain more than one row, and the first column cells
cannot contain multiple lines. They look like this:

37 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks
38 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#doctest-blocks
39 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext html#grid-tables

40 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple- tables

12 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables

Sphinx Documentation, Release 4.0.0+

A B A and B

False False False
True False False
False True False
True True True

Two more syntaxes are supported: CSV tables and List tables. They use an explicit markup block. Refer to Tables for
more information.

Hyperlinks
External links

Use "Link text <https://domain.invalid/>"_ for inline web links. If the link text should be the web address,
you don’t need special markup at all, the parser finds links and mail addresses in ordinary text.

Important: There must be a space between the link text and the opening < for the URL.

You can also separate the link and the target definition (ref*'), like this:

This is a paragraph that contains "a link _.

_a link: https://domain.invalid/

Internal links

Internal linking is done via a special reST role provided by Sphinx, see the section on specific markup, Cross-
referencing arbitrary locations.

Sections

Section headers (ref*”) are created by underlining (and optionally overlining) the section title with a punctuation char-
acter, at least as long as the text:

This is a heading

Normally, there are no heading levels assigned to certain characters as the structure is determined from the succession
of headings. However, this convention is used in Python’s Style Guide for documenting®® which you may follow:

* # with overline, for parts
 * with overline, for chapters

e = for sections

41 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink- targets
42 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#sections
43 https://docs.python.org/devguide/documenting. html#style- guide

1.3. reStructuredText 13

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink-targets
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections
https://docs.python.org/devguide/documenting.html#style-guide

Sphinx Documentation, Release 4.0.0+

e -, for subsections
e A for subsubsections
o " for paragraphs

Of course, you are free to use your own marker characters (see the reST documentation), and use a deeper nesting level,
but keep in mind that most target formats (HTML, LaTeX) have a limited supported nesting depth.

Field Lists

Field lists (ref*) are sequences of fields marked up like this:

:fieldname: Field content

They are commonly used in Python documentation:

def my_function(my_arg, my_other_arg):
"""A function just for me.

:param my_arg: The first of my arguments.
:param my_other_arg: The second of my arguments.

:returns: A message (just for me, of course).

Sphinx extends standard docutils behavior and intercepts field lists specified at the beginning of documents. Refer to
Field Lists for more information.

Roles

A role or “custom interpreted text role” (ref*’) is an inline piece of explicit markup. It signifies that the enclosed
text should be interpreted in a specific way. Sphinx uses this to provide semantic markup and cross-referencing of
identifiers, as described in the appropriate section. The general syntax is :rolename: content .

Docutils supports the following roles:

* emphasis’® — equivalent of *emphasis*

4

« strong*’ — equivalent of **strong**

o literal*® — equivalent of **literal "’

* subscript*’ — subscript text
« superscript™ — superscript text
« title-reference’®’ — for titles of books, periodicals, and other materials

Refer to Roles for roles added by Sphinx.

4 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field- lists
4 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.ntml#roles

46 http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis

47 http://docutils.sourceforge.net/docs/ref/rst/roles. html#strong

48 http://docutils.sourceforge.net/docs/ref/rst/roles. html#literal

49 http://docutils.sourceforge.net/docs/ref/rst/roles. html#subscript

50 http://docutils.sourceforge.net/docs/ref/rst/roles. html#superscript

31 http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference

14 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#roles
http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis
http://docutils.sourceforge.net/docs/ref/rst/roles.html#strong
http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal
http://docutils.sourceforge.net/docs/ref/rst/roles.html#subscript
http://docutils.sourceforge.net/docs/ref/rst/roles.html#superscript
http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference

Sphinx Documentation, Release 4.0.0+

Explicit Markup

“Explicit markup” (ref?) is used in reST for most constructs that need special handling, such as footnotes, specially-
highlighted paragraphs, comments, and generic directives.

An explicit markup block begins with a line starting with .. followed by whitespace and is terminated by the next
paragraph at the same level of indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough when you write it.)

Directives

A directive (ref>®) is a generic block of explicit markup. Along with roles, it is one of the extension mechanisms of
reST, and Sphinx makes heavy use of it.

Docutils supports the following directives:

5 56 [59

+ Admonitions: attention®, caution®, danger’®, error’’, hint>®, important®, note®, tip®!, warning®” and the
generic admonition®. (Most themes style only “note” and “warning” specially.)

* Images:

- image64 (see also Images below)

65

— figure® (an image with caption and optional legend)

* Additional body elements:

contents® (a local, i.e. for the current file only, table of contents)

67

— container”’ (a container with a custom class, useful to generate an outer <div> in HTML)

— rubric® (a heading without relation to the document sectioning)
— topic®, sidebar’’ (special highlighted body elements)

— parsed-literal’! (literal block that supports inline markup)

— epigraph’” (a block quote with optional attribution line)

— highlights’?, pull-quote”* (block quotes with their own class attribute)

— compound’ (a compound paragraph)

52 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#explicit-markup-blocks
53 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext html#directives
34 http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention

35 http://docutils.sourceforge.net/docs/ref/rst/directives. html#caution

36 http://docutils.sourceforge.net/docs/ref/rst/directives. html#danger

37 http://docutils.sourceforge.net/docs/ref/rst/directives.html#error

38 http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint

39 http://docutils.sourceforge.net/docs/ref/rst/directives. html#important

60 http://docutils.sourceforge.net/docs/ref/rst/directives.html#note

61 http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip

62 http://docutils.sourceforge.net/docs/ref/rst/directives. html#warning

63 http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions

64 http://docutils.sourceforge.net/docs/ref/rst/directives.html#image

95 http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure

96 http://docutils.sourceforge.net/docs/ref/rst/directives.html#table- of-contents
67 http://docutils.sourceforge.net/docs/ref/rst/directives.html#container

%8 http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric

%9 http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic

70 http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar

71 http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal

72 http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph

73 http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights

74 http://docutils.sourceforge.net/docs/ref/rst/directives. html#pull-quote

75 http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound-paragraph

1.3. reStructuredText 15

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives
http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention
http://docutils.sourceforge.net/docs/ref/rst/directives.html#caution
http://docutils.sourceforge.net/docs/ref/rst/directives.html#danger
http://docutils.sourceforge.net/docs/ref/rst/directives.html#error
http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint
http://docutils.sourceforge.net/docs/ref/rst/directives.html#important
http://docutils.sourceforge.net/docs/ref/rst/directives.html#note
http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip
http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning
http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions
http://docutils.sourceforge.net/docs/ref/rst/directives.html#image
http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents
http://docutils.sourceforge.net/docs/ref/rst/directives.html#container
http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric
http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic
http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar
http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal
http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph
http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights
http://docutils.sourceforge.net/docs/ref/rst/directives.html#pull-quote
http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound-paragraph

Sphinx Documentation, Release 4.0.0+

* Special tables:
— table’® (a table with title)
— csv-table’’ (a table generated from comma-separated values)
— list-table’® (a table generated from a list of lists)
* Special directives:
— raw’? (include raw target-format markup)

— include® (include reStructuredText from another file) —in Sphinx, when given an absolute include file path,
this directive takes it as relative to the source directory

— class®! (assign a class attribute to the next element)’
e HTML specifics:
— meta®” (generation of HTML <meta> tags, see also HTML Metadata below)
— title®® (override document title)
¢ Influencing markup:
— default-role®* (set a new default role)
— role® (create a new role)

Since these are only per-file, better use Sphinx’s facilities for setting the default_role.

86

Warning: Do not use the directives sectnum®®, header®” and footer®®.

Directives added by Sphinx are described in Directives.

Basically, a directive consists of a name, arguments, options and content. (Keep this terminology in mind, it is used in
the next chapter describing custom directives.) Looking at this example,

function:: foo(x)
foo(y, 2)
:module: some.module.name

Return a line of text input from the user.

function is the directive name. It is given two arguments here, the remainder of the first line and the second line,
as well as one option module (as you can see, options are given in the lines immediately following the arguments and
indicated by the colons). Options must be indented to the same level as the directive content.

The directive content follows after a blank line and is indented relative to the directive start.

76 http://docutils.sourceforge.net/docs/ref/rst/directives. html#table
77 http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table
78 http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table
79 http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data- pass-through
80 http://docutils.sourceforge.net/docs/ref/rst/directives. html#include
81 http://docutils.sourceforge.net/docs/ref/rst/directives.html#class
I When the default domain contains a class directive, this directive will be shadowed. Therefore, Sphinx re-exports it as rst-class.
82 http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta
83 http://docutils.sourceforge.net/docs/ref/rst/directives. html#metadata-document-title
84 http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role
85 http://docutils.sourceforge.net/docs/ref/rst/directives.html#role
86 http://docutils.sourceforge.net/docs/ref/rst/directives. html#sectnum
87 http://docutils.sourceforge.net/docs/ref/rst/directives.html#header
88 http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer

16 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data-pass-through
http://docutils.sourceforge.net/docs/ref/rst/directives.html#include
http://docutils.sourceforge.net/docs/ref/rst/directives.html#class
http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta
http://docutils.sourceforge.net/docs/ref/rst/directives.html#metadata-document-title
http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role
http://docutils.sourceforge.net/docs/ref/rst/directives.html#role
http://docutils.sourceforge.net/docs/ref/rst/directives.html#sectnum
http://docutils.sourceforge.net/docs/ref/rst/directives.html#header
http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer

Sphinx Documentation, Release 4.0.0+

Images

reST supports an image directive (ref®”), used like so:

. image:: gnu.png
(options)

When used within Sphinx, the file name given (here gnu.png) must either be relative to the source file, or absolute
which means that they are relative to the top source directory. For example, the file sketch/spam.rst could refer to
the image images/spam.png as . ./images/spam.png or /images/spam.png.

Sphinx will automatically copy image files over to a subdirectory of the output directory on building (e.g. the _static
directory for HTML output.)

Interpretation of image size options (width and height) is as follows: if the size has no unit or the unit is pixels, the
given size will only be respected for output channels that support pixels. Other units (like pt for points) will be used
for HTML and LaTeX output (the latter replaces pt by bp as this is the TeX unit such that 72bp=1in).

Sphinx extends the standard docutils behavior by allowing an asterisk for the extension:

. image:: gnu.*

Sphinx then searches for all images matching the provided pattern and determines their type. Each builder then chooses
the best image out of these candidates. For instance, if the file name gnu. * was given and two files gnu.pdf and gnu.
png existed in the source tree, the LaTeX builder would choose the former, while the HTML builder would prefer the
latter. Supported image types and choosing priority are defined at Builders.

Note that image file names should not contain spaces.
Changed in version 0.4: Added the support for file names ending in an asterisk.
Changed in version 0.6: Image paths can now be absolute.

Changed in version 1.5: latex target supports pixels (default is 96px=1in).

Footnotes

For footnotes (ref’’), use [#name]_ to mark the footnote location, and add the footnote body at the bottom of the
document after a “Footnotes” rubric heading, like so:

Lorem ipsum [#f1]_ dolor sit amet ... [#f2]_
. rubric:: Footnotes

[#£1] Text of the first footnote.
[#£2] Text of the second footnote.

You can also explicitly number the footnotes ([1]_) or use auto-numbered footnotes without names ([#]_).

89 http://docutils.sourceforge.net/docs/ref/rst/directives. html#image
%0 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes

1.3. reStructuredText 17

http://docutils.sourceforge.net/docs/ref/rst/directives.html#image
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes

Sphinx Documentation, Release 4.0.0+

Citations

Standard reST citations (ref’') are supported, with the additional feature that they are “global”, i.e. all citations can be
referenced from all files. Use them like so:

Lorem ipsum [Ref]_ dolor sit amet.

[Ref] Book or article reference, URL or whatever.

Citation usage is similar to footnote usage, but with a label that is not numeric or begins with #.

Substitutions

reST supports “substitutions” (ref’?), which are pieces of text and/or markup referred to in the text by |name|. They
are defined like footnotes with explicit markup blocks, like this:

|name| replace:: replacement *text*

or this:

|caution| image:: warning.png
:alt: Warning!

See the reST reference for substitutions®® for details.

If you want to use some substitutions for all documents, put them into rst_prolog or rst_epilog or put them into a
separate file and include it into all documents you want to use them in, using the include directive. (Be sure to give
the include file a file name extension differing from that of other source files, to avoid Sphinx finding it as a standalone
document.)

Sphinx defines some default substitutions, see Substitutions.
Comments

Every explicit markup block which isn’t a valid markup construct (like the footnotes above) is regarded as a comment
(ref®*). For example:

This is a comment.

You can indent text after a comment start to form multiline comments:

This whole indented block
is a comment.

Still in the comment.

1 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext html#citations

92 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
93 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#substitution-definitions
94 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments

18 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#citations
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments

Sphinx Documentation, Release 4.0.0+

HTML Metadata

The meta directive (ref”) allows specifying the HTML metadata element”® of a Sphinx documentation page. For
example, the directive:

. meta::
:description: The Sphinx documentation builder
:keywords: Sphinx, documentation, builder

will generate the following HTML output:

<meta name="description" content="The Sphinx documentation builder">
<meta name="keywords" content="Sphinx, documentation, builder">

Also, Sphinx will add the keywords as specified in the meta directive to the search index. Thereby, the 1ang attribute
of the meta element is considered. For example, the directive:

. meta::
:keywords: backup
:keywords lang=en: pleasefindthiskey pleasefindthiskeytoo
:keywords lang=de: bittediesenkeyfinden

adds the following words to the search indices of builds with different language configurations:
* pleasefindthiskey, pleasefindthiskeytoo to English builds;
¢ bittediesenkeyfinden to German builds;

* backup to builds in all languages.

Source encoding

Since the easiest way to include special characters like em dashes or copyright signs in reST is to directly write them as
Unicode characters, one has to specify an encoding. Sphinx assumes source files to be encoded in UTF-8 by default;
you can change this with the source_encoding config value.

Gotchas

There are some problems one commonly runs into while authoring reST documents:

¢ Separation of inline markup: As said above, inline markup spans must be separated from the surrounding text
by non-word characters, you have to use a backslash-escaped space to get around that. See the reference’’ for
the details.

* No nested inline markup: Something like *see :func: foo™ * is not possible.

93 http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta
96 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
97 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#substitution-definitions

1.3. reStructuredText 19

http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions

Sphinx Documentation, Release 4.0.0+

Roles

Sphinx wuses interpreted text roles to insert semantic markup into documents. They are written as
:rolename: content’.

Note: The default role (" content) has no special meaning by default. You are free to use it for anything you like,
e.g. variable names; use the default_role config value to set it to a known role — the any role to find anything or the
py :obj role to find Python objects are very useful for this.

See Domains for roles added by domains.

Cross-referencing syntax

Cross-references are generated by many semantic interpreted text roles. Basically, you only need to write
:role: target’, and a link will be created to the item named target of the type indicated by role. The link’s text will
be the same as target.

There are some additional facilities, however, that make cross-referencing roles more versatile:

* You may supply an explicit title and reference target, like in reST direct hyperlinks: :role: title <target>"
will refer to rarget, but the link text will be title.

* If you prefix the content with !, no reference/hyperlink will be created.

e If you prefix the content with ~, the link text will only be the last component of the target. For example,
:py:meth: ~Queue.Queue.get will refer to Queue.Queue.get but only display get as the link text. This
does not work with all cross-reference roles, but is domain specific.

In HTML output, the link’s title attribute (that is e.g. shown as a tool-tip on mouse-hover) will always be the
full target name.

Cross-referencing anything

rany:
New in version 1.3.

This convenience role tries to do its best to find a valid target for its reference text.
* First, it tries standard cross-reference targets that would be referenced by doc, ref or option.

Custom objects added to the standard domain by extensions (see Sphinx.add_object_type()) are also
searched.

* Then, it looks for objects (targets) in all loaded domains. It is up to the domains how specific a match
must be. For example, in the Python domain a reference of :any: Builder ™ would match the sphinx.
builders.Builder class.

If none or multiple targets are found, a warning will be emitted. In the case of multiple targets, you can change
“any” to a specific role.

This role is a good candidate for setting default_role. If you do, you can write cross-references without a lot
of markup overhead. For example, in this Python function documentation

. function:: install()

This function installs a handler for every signal known by the
"signal module. See the section "about-signals’ for more information.

20 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

there could be references to a glossary term (usually :term: handler’), a Python module (usually
:py:mod: signal” or :mod: signal’) and a section (usually :ref: about-signals’).

The any role also works together with the intersphinx extension: when no local cross-reference is found, all
object types of intersphinx inventories are also searched.

Cross-referencing objects

These roles are described with their respective domains:
e Python
e C
o C++
» JavaScript
* ReST

Cross-referencing arbitrary locations

:ref:
To support cross-referencing to arbitrary locations in any document, the standard reST labels are used. For this
to work label names must be unique throughout the entire documentation. There are two ways in which you can
refer to labels:

 If you place a label directly before a section title, you can reference to it with :ref: label-name". For
example:

. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref: my-reference-label .

The :ref: role would then generate a link to the section, with the link title being “Section to cross-
reference”. This works just as well when section and reference are in different source files.

Automatic labels also work with figures. For example:

. _my-figure:

figure:: whatever

Figure caption

In this case, a reference :ref: my-figure" would insert a reference to the figure with link text “Figure
caption”.

The same works for tables that are given an explicit caption using the table’® directive.

» Labels that aren’t placed before a section title can still be referenced, but you must give the link an explicit
title, using this syntax: :ref: Link title <label-name>".

1.3. reStructuredText 21

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

Sphinx Documentation, Release 4.0.0+

Note: Reference labels must start with an underscore. When referencing a label, the underscore must be omitted
(see examples above).

Using ref is advised over standard reStructuredText links to sections (like “Section title’_) because it
works across files, when section headings are changed, will raise warnings if incorrect, and works for all builders
that support cross-references.

Cross-referencing documents

New in version 0.6.

There is also a way to directly link to documents:

:doc:

Link to the specified document; the document name can be specified in absolute or relative fashion. For example,
if the reference :doc: “parrot’ occurs in the document sketches/index, then the link refers to sketches/
parrot. If the reference is :doc: " /people” or :doc: " ../people’, the link refers to people.

If no explicit link text is given (like usual: :doc: Monty Python members </people>"), the link caption
will be the title of the given document.

Referencing downloadable files

New in version 0.6.

:download:

This role lets you link to files within your source tree that are not reST documents that can be viewed, but files
that can be downloaded.

When you use this role, the referenced file is automatically marked for inclusion in the output when building
(obviously, for HTML output only). All downloadable files are put into a _downloads/<unique hash>/ sub-
directory of the output directory; duplicate filenames are handled.

An example:

See :download: this example script <../example.py>".

The given filename is usually relative to the directory the current source file is contained in, but if it absolute
(starting with /), it is taken as relative to the top source directory.

The example. py file will be copied to the output directory, and a suitable link generated to it.

Not to show unavailable download links, you should wrap whole paragraphs that have this role:

. only:: builder_html

See :download: this example script <../example.py>.

98 http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

22

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Cross-referencing figures by figure number

New in version 1.3.

Changed in version 1.5: numref role can also refer sections. And numref allows {name} for the link text.

:numref:
Link to the specified figures, tables, code-blocks and sections; the standard reST labels are used. When you use
this role, it will insert a reference to the figure with link text by its figure number like “Fig. 1.1”.

If an explicit link text is given (as usual: :numref: Image of Sphinx (Fig. %s) <my-figure>), the link
caption will serve as title of the reference. As placeholders, %s and {number} get replaced by the figure number
and {name} by the figure caption. If no explicit link text is given, the numfig_format setting is used as fall-back
default.

If numfig is False, figures are not numbered, so this role inserts not a reference but the label or the link text.

Cross-referencing other items of interest

The following roles do possibly create a cross-reference, but do not refer to objects:

-envvar:

An environment variable. Index entries are generated. Also generates a link to the matching envvar directive,
if it exists.

:token:
The name of a grammar token (used to create links between productionlist directives).

:keyword:

The name of a keyword in Python. This creates a link to a reference label with that name, if it exists.
:option:

A command-line option to an executable program. This generates a link to a option directive, if it exists.
The following role creates a cross-reference to a term in a glossary:

jterm:
Reference to a term in a glossary. A glossary is created using the glossary directive containing a definition list
with terms and definitions. It does not have to be in the same file as the term markup, for example the Python
docs have one global glossary in the glossary.rst file.

If you use a term that’s not explained in a glossary, you’ll get a warning during build.

Math

:math:
Role for inline math. Use like this:

Since Pythagoras, we know that :math: a*2 + b*2 = cr2".

req:
Same as math:numref.

1.3. reStructuredText 23

Sphinx Documentation, Release 4.0.0+

Other semantic markup

The following roles don’t do anything special except formatting the text in a different style:

:abbr:
An abbreviation. If the role content contains a parenthesized explanation, it will be treated specially: it will be
shown in a tool-tip in HTML, and output only once in LaTeX.

Example: :abbr: LIFO (last-in, first-out)'.

New in version 0.6.

: command:
The name of an OS-level command, such as rm.
:dfn:
Mark the defining instance of a term in the text. (No index entries are generated.)
:file:
The name of a file or directory. Within the contents, you can use curly braces to indicate a “variable” part, for
example:

. is installed in :file: /usr/lib/python2.{x}/site-packages” ...

In the built documentation, the x will be displayed differently to indicate that it is to be replaced by the Python
minor version.

:guilabel:
Labels presented as part of an interactive user interface should be marked using guilabel. This includes labels
from text-based interfaces such as those created using curses® or other text-based libraries. Any label used
in the interface should be marked with this role, including button labels, window titles, field names, menu and
menu selection names, and even values in selection lists.

Changed in version 1.0: An accelerator key for the GUI label can be included using an ampersand; this will
be stripped and displayed underlined in the output (example: :guilabel: &Cancel’). To include a literal
ampersand, double it.

:kbd:
Mark a sequence of keystrokes. What form the key sequence takes may depend on platform- or application-
specific conventions. When there are no relevant conventions, the names of modifier keys should be spelled out,
to improve accessibility for new users and non-native speakers. For example, an xemacs key sequence may be
marked like :kbd: C-x C-£°, but without reference to a specific application or platform, the same sequence
should be marked as :kbd: ~Control-x Control-f".

:mailheader:
The name of an RFC 822-style mail header. This markup does not imply that the header is being used in an email
message, but can be used to refer to any header of the same “style.” This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same way it would normally be found
in practice, with the camel-casing conventions being preferred where there is more than one common usage. For
example: :mailheader: Content-Type .

:makevar:
The name of a make variable.

:manpage:
A reference to a Unix manual page including the section, e.g. :manpage: 1s(1) . Creates a hyperlink to an
external site rendering the manpage if manpages_url is defined.

:menuselection:
Menu selections should be marked using the menuselectionrole. This is used to mark a complete sequence of

9 https://docs.python.org/3/library/curses.html#module-curses

24 Chapter 1. Using Sphinx

https://docs.python.org/3/library/curses.html#module-curses

Sphinx Documentation, Release 4.0.0+

menu selections, including selecting submenus and choosing a specific operation, or any subsequence of such a
sequence. The names of individual selections should be separated by -->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection: Start --> Programs’

When including a selection that includes some trailing indicator, such as the ellipsis some operating systems use
to indicate that the command opens a dialog, the indicator should be omitted from the selection name.

menuselection also supports ampersand accelerators just like guilabel.
:mimetype:

The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).
:newsgroup:

The name of a Usenet newsgroup.

Todo: Is this not part of the standard domain?

:program:
The name of an executable program. This may differ from the file name for the executable for some platforms.
In particular, the . exe (or other) extension should be omitted for Windows programs.

:regexp:
A regular expression. Quotes should not be included.

:samp:
A piece of literal text, such as code. Within the contents, you can use curly braces to indicate a “variable” part,
as in file. For example, in :samp: print 1+{variable}, the part variable would be emphasized.

If you don’t need the “variable part” indication, use the standard °~ “code™ " instead.
Changed in version 1.8: Allowed to escape curly braces with backslash
There is also an index role to generate index entries.

The following roles generate external links:

:pep:
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text “PEP number”
is generated; in the HTML output, this text is a hyperlink to an online copy of the specified PEP. You can link to
a specific section by saying :pep: number#anchor .

:rfc:

A reference to an Internet Request for Comments. This generates appropriate index entries. The text “RFC
number” is generated; in the HTML output, this text is a hyperlink to an online copy of the specified RFC. You
can link to a specific section by saying :rfc: number#anchor".

Note that there are no special roles for including hyperlinks as you can use the standard reST markup for that purpose.

1.3. reStructuredText 25

Sphinx Documentation, Release 4.0.0+

Substitutions

The documentation system provides three substitutions that are defined by default. They are set in the build configura-
tion file.

|release]
Replaced by the project release the documentation refers to. This is meant to be the full version string including
alpha/beta/release candidate tags, e.g. 2.5.2b3. Set by release.

| version|
Replaced by the project version the documentation refers to. This is meant to consist only of the major and minor
version parts, e.g. 2.5, even for version 2.5.1. Set by version.

| today |
Replaced by either today’s date (the date on which the document is read), or the date set in the build configuration
file. Normally has the format April 14, 2007. Set by today_fmt and today.

Directives

As previously discussed, a directive is a generic block of explicit markup. While Docutils provides a number of direc-
tives, Sphinx provides many more and uses directives as one of the primary extension mechanisms.

See Domains for roles added by domains.
See also:

Refer to the reStructuredText Primer for an overview of the directives provided by Docutils.
Table of contents
Since reST does not have facilities to interconnect several documents, or split documents into multiple output files,

Sphinx uses a custom directive to add relations between the single files the documentation is made of, as well as tables
of contents. The toctree directive is the central element.

Note: Simple “inclusion” of one file in another can be done with the include'? directive.

Note: To create table of contents for current document (.rst file), use the standard reST contents directive'‘!.

. toctree::
This directive inserts a “TOC tree” at the current location, using the individual TOCs (including “sub-TOC
trees”) of the documents given in the directive body. Relative document names (not beginning with a slash) are
relative to the document the directive occurs in, absolute names are relative to the source directory. A numeric
maxdepth option may be given to indicate the depth of the tree; by default, all levels are included.''?

The representation of “TOC tree” is changed in each output format. The builders that output multiple files (ex.
HTML) treat it as a collection of hyperlinks. On the other hand, the builders that output a single file (ex. LaTeX,
man page, etc.) replace it with the content of the documents on the TOC tree.

Consider this example (taken from the Python docs’ library reference index):

100 hitp://docutils.sourceforge.net/docs/ref/rst/directives.html#include
101 http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents

26 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/ref/rst/directives.html#include
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents

Sphinx Documentation, Release 4.0.0+

toctree::
:maxdepth: 2

intro

strings

datatypes

numeric

(many more documents listed here)

This accomplishes two things:

 Tables of contents from all those documents are inserted, with a maximum depth of two, that means one
nested heading. toctree directives in those documents are also taken into account.

* Sphinx knows the relative order of the documents intro, strings and so forth, and it knows that they
are children of the shown document, the library index. From this information it generates “next chapter”,
“previous chapter” and “parent chapter” links.

Entries

Document titles in the toctree will be automatically read from the title of the referenced document. If that isn’t
what you want, you can specify an explicit title and target using a similar syntax to reST hyperlinks (and Sphinx’s
cross-referencing syntax). This looks like:

toctree::

intro
All about strings <strings>
datatypes

The second line above will link to the strings document, but will use the title “All about strings” instead of the
title of the strings document.

You can also add external links, by giving an HTTP URL instead of a document name.
Section numbering

If you want to have section numbers even in HTML output, give the toplevel toctree a numbered option. For
example:

toctree::
:numbered:

foo
bar

Numbering then starts at the heading of foo. Sub-toctrees are automatically numbered (don’t give the numbered
flag to those).

Numbering up to a specific depth is also possible, by giving the depth as a numeric argument to numbered.
Additional options

You can use the caption option to provide a toctree caption and you can use the name option to provide an
implicit target name that can be referenced by using ref:

toctree::
:caption: Table of Contents
:name: mastertoc

(continues on next page)

1.3. reStructuredText 27

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

foo

If you want only the titles of documents in the tree to show up, not other headings of the same level, you can use
the titlesonly option:

toctree::
:titlesonly:

foo
bar

You can use “globbing” in toctree directives, by giving the glob flag option. All entries are then matched against
the list of available documents, and matches are inserted into the list alphabetically. Example:

toctree::
:glob:

intro*
recipe/*

This includes first all documents whose names start with intro, then all documents in the recipe folder, then
all remaining documents (except the one containing the directive, of course.)''*

The special entry name self stands for the document containing the toctree directive. This is useful if you want
to generate a “sitemap” from the toctree.

You can use the reversed flag option to reverse the order of the entries in the list. This can be useful when
using the glob flag option to reverse the ordering of the files. Example:

toctree::
:glob:
:reversed:

recipe/*

You can also give a “hidden” option to the directive, like this:

toctree::
:hidden:

doc_1
doc_2

This will still notify Sphinx of the document hierarchy, but not insert links into the document at the location of
the directive — this makes sense if you intend to insert these links yourself, in a different style, or in the HTML
sidebar.

In cases where you want to have only one top-level toctree and hide all other lower level toctrees you can add the
“includehidden” option to the top-level toctree entry:

toctree::
:includehidden:

(continues on next page)

28 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

doc_1
doc_2

All other toctree entries can then be eliminated by the “hidden” option.

In the end, all documents in the source directory (or subdirectories) must occur in some toctree directive;
Sphinx will emit a warning if it finds a file that is not included, because that means that this file will not be
reachable through standard navigation.

Use exclude_patterns to explicitly exclude documents or directories from building completely. Use the “or-
phan” metadata to let a document be built, but notify Sphinx that it is not reachable via a toctree.

The “master document” (selected by master_doc) is the “root” of the TOC tree hierarchy. It can be used as the
documentation’s main page, or as a “full table of contents” if you don’t give a maxdepth option.

Changed in version 0.3: Added “globbing” option.

Changed in version 0.6: Added “numbered” and “hidden” options as well as external links and support for “self”
references.

Changed in version 1.0: Added “titlesonly” option.
Changed in version 1.1: Added numeric argument to “numbered”.
Changed in version 1.2: Added “includehidden” option.

Changed in version 1.3: Added “caption” and “name” option.

Special names

Sphinx reserves some document names for its own use; you should not try to create documents with these names — it
will cause problems.

The special document names (and pages generated for them) are:
¢ genindex, modindex, search
These are used for the general index, the Python module index, and the search page, respectively.

The general index is populated with entries from modules, all index-generating object descriptions, and from
index directives.

The Python module index contains one entry per py :module directive.

The search page contains a form that uses the generated JSON search index and JavaScript to full-text search the
generated documents for search words; it should work on every major browser that supports modern JavaScript.

* every name beginning with _

Though few such names are currently used by Sphinx, you should not create documents or document-containing
directories with such names. (Using _ as a prefix for a custom template directory is fine.)

Warning: Be careful with unusual characters in filenames. Some formats may interpret these characters in unex-
pected ways:

* Do not use the colon : for HTML based formats. Links to other parts may not work.

* Do not use the plus + for the ePub format. Some resources may not be found.

113 The LaTeX writer only refers the maxdepth option of first toctree directive in the document.
114 A note on available globbing syntax: you can use the standard shell constructs *, ?, [...] and [!...] with the feature that these all don’t
match slashes. A double star ** can be used to match any sequence of characters including slashes.

1.3. reStructuredText 29

Sphinx Documentation, Release 4.0.0+

Paragraph-level markup

These directives create short paragraphs and can be used inside information units as well as normal text.

. hote::
An especially important bit of information about an API that a user should be aware of when using whatever bit
of API the note pertains to. The content of the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

. hote::

This function is not suitable for sending spam e-mails.

. warning::
An important bit of information about an API that a user should be very aware of when using whatever bit of
API the warning pertains to. The content of the directive should be written in complete sentences and include all
appropriate punctuation. This differs from note in that it is recommended over note for information regarding
security.

. versionadded:: version
This directive documents the version of the project which added the described feature to the library or C API.
When this applies to an entire module, it should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add a second argument consisting of a
brief explanation of the change.

Example:

. versionadded:: 2.5
The *spam* parameter.

Note that there must be no blank line between the directive head and the explanation; this is to make these blocks
visually continuous in the markup.

. versionchanged:: version
Similar to versionadded, but describes when and what changed in the named feature in some way (new pa-
rameters, changed side effects, etc.).

. deprecated:: version
Similar to versionchanged, but describes when the feature was deprecated. An explanation can also be given,
for example to inform the reader what should be used instead. Example:

. deprecated:: 3.1
Use :func: spam instead.

seealso::
Many sections include a list of references to module documentation or external documents. These lists are created
using the seealso directive.

The seealso directive is typically placed in a section just before any subsections. For the HTML output, it is
shown boxed off from the main flow of the text.

The content of the seealso directive should be a reST definition list. Example:

seealso::

Module :py:mod: zipfile®

(continues on next page)

30 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

Documentation of the :py:mod: zipfile standard module.

"GNU tar manual, Basic Tar Format _
Documentation for tar archive files, including GNU tar extensions.

There’s also a “short form” allowed that looks like this:

. seealso:: modules :py:mod: zipfile , :py:mod: tarfile’

New in version 0.5: The short form.

. rubric:: title
This directive creates a paragraph heading that is not used to create a table of contents node.

Note: If the title of the rubric is “Footnotes” (or the selected language’s equivalent), this rubric is ignored by
the LaTeX writer, since it is assumed to only contain footnote definitions and therefore would create an empty
heading.

. centered::
This directive creates a centered boldfaced line of text. Use it as follows:

. centered:: LICENSE AGREEMENT

Deprecated since version 1.1: This presentation-only directive is a legacy from older versions. Use a rst-class
directive instead and add an appropriate style.

.. hlist::
This directive must contain a bullet list. It will transform it into a more compact list by either distributing more
than one item horizontally, or reducing spacing between items, depending on the builder.

For builders that support the horizontal distribution, there is a columns option that specifies the number of
columns; it defaults to 2. Example:

. hlist::
:columns: 3
“* A list of

“* short items

* that should be
* displayed

* horizontally

New in version 0.6.

Showing code examples

There are multiple ways to show syntax-highlighted literal code blocks in Sphinx:
e using reST doctest blocks;
* using reST literal blocks, optionally in combination with the highlight directive;
* using the code-block directive;

* and using the 1iteralinclude directive.

1.3. reStructuredText 31

Sphinx Documentation, Release 4.0.0+

Doctest blocks can only be used to show interactive Python sessions, while the remaining three can be used for other
languages. Of these three, literal blocks are useful when an entire document, or at least large sections of it, use code
blocks with the same syntax and which should be styled in the same manner. On the other hand, the code-block
directive makes more sense when you want more fine-tuned control over the styling of each block or when you have a
document containing code blocks using multiple varied syntaxes. Finally, the 1iteralinclude directive is useful for
including entire code files in your documentation.

In all cases, Syntax highlighting is provided by Pygments'’>. When using literal blocks, this is configured using

any highlight directives in the source file. When a highlight directive is encountered, it is used until the next
highlight directive is encountered. If there is no highlight directive in the file, the global highlighting language
is used. This defaults to python but can be configured using the highlight_language config value. The following
values are supported:

* none (no highlighting)

e default (similar to python3 but with a fallback to none without warning highlighting fails; the default when
highlight_language isn’t set)

* guess (let Pygments guess the lexer based on contents, only works with certain well-recognizable languages)

e python

* rest

e cC

103

* ... and any other lexer alias that Pygments supports

If highlighting with the selected language fails (i.e. Pygments emits an “Error” token), the block is not highlighted in
any way.

Important: The list of lexer aliases supported is tied to the Pygment version. If you want to ensure consistent
highlighting, you should fix your version of Pygments.

.. highlight:: language
Example:

. highlight:: c

This language is used until the next highlight directive is encountered. As discussed previously, language can
be any lexer alias supported by Pygments.

options
:linenothreshold: threshold (number (optional))
Enable to generate line numbers for code blocks.

This option takes an optional number as threshold parameter. If any threshold given, the directive will
produce line numbers only for the code blocks longer than N lines. If not given, line numbers will be
produced for all of code blocks.

Example:

. highlight:: python
:linenothreshold: 5

102 http://pygments.org
103 http://pygments.org/docs/lexers

32 Chapter 1. Using Sphinx

http://pygments.org
http://pygments.org/docs/lexers

Sphinx Documentation, Release 4.0.0+

:force: (no value)
If given, minor errors on highlighting are ignored.

New in version 2.1.

. code-block:: [languagel]
Example:

. code-block:: ruby

Some Ruby code.

The directive’s alias name sourcecode works as well. This directive takes a language name as an argument. It
can be any lexer alias supported by Pygments. If it is not given, the setting of highlight directive will be used.
If not set, highlight_language will be used.

Changed in version 2.0: The 1anguage argument becomes optional.
options

:linenos: (no value)
Enable to generate line numbers for the code block:

. code-block:: ruby
:linenos:

Some more Ruby code.

:lineno-start: number (number)
Set the first line number of the code block. If present, 1inenos option is also automatically activated:

. code-block:: ruby
:lineno-start: 10

Some more Ruby code, with line numbering starting at 10.

New in version 1.3.

:emphasize-lines: line numbers (comma separated numbers)
Emphasize particular lines of the code block:

. code-block:: python
:emphasize-lines: 3,5

def some_function():
interesting = False
print 'This line is highlighted.'
print 'This one is not...'
print '...but this one is.'

New in version 1.1.
Changed in version 1.6.6: LaTeX supports the emphasize-lines option.

:caption: caption of code block (text)
Set a caption to the code block.

New in version 1.3.

1.3. reStructuredText 33

Sphinx Documentation, Release 4.0.0+

:name: a label for hyperlink (text)
Define implicit target name that can be referenced by using ref. For example:

code-block:: python
:caption: this.py
:name: this-py

print 'Explicit is better than implicit.'

In order to cross-reference a code-block using either the ref or the numref role, it is necessary that both
name and caption be defined. The argument of name can then be given to numref to generate the cross-
reference. Example:

See :numref: this-py for an example.

When using ref, it is possible to generate a cross-reference with only name defined, provided an explicit
title is given. Example:

See :ref: this code snippet <this-py>" for an example.

New in version 1.3.

:dedent: number (number or no value)
Strip indentation characters from the code block. When number given, leading N characters are removed.
When no argument given, leading spaces are removed via textwrap.dedent ()'*. For example:

code-block:: ruby
:dedent: 4

some ruby code

New in version 1.3.
Changed in version 3.5: Support automatic dedent.

:force: (no value)
If given, minor errors on highlighting are ignored.

New in version 2.1.

literalinclude:: filename
Longer displays of verbatim text may be included by storing the example text in an external file containing only
plain text. The file may be included using the 1iteralinclude directive.''> For example, to include the Python
source file example.py, use:

literalinclude:: example.py

The file name is usually relative to the current file’s path. However, if it is absolute (starting with /), it is relative
to the top source directory.

Additional options

Like code-block, the directive supports the 1inenos flag option to switch on line numbers, the 1ineno-start
option to select the first line number, the emphasize-1ines option to emphasize particular lines, the name option
to provide an implicit target name, the dedent option to strip indentation characters for the code block, and a
language option to select a language different from the current file’s standard language. In addition, it supports
the caption option; however, this can be provided with no argument to use the filename as the caption. Example
with options:

104 https://docs.python.org/3/library/textwrap.html#textwrap.dedent

34 Chapter 1. Using Sphinx

https://docs.python.org/3/library/textwrap.html#textwrap.dedent

Sphinx Documentation, Release 4.0.0+

. literalinclude:: example.rb
:language: ruby
:emphasize-lines: 12,15-18
:linenos:

Tabs in the input are expanded if you give a tab-width option with the desired tab width.

Include files are assumed to be encoded in the source_encoding. If the file has a different encoding, you can
specify it with the encoding option:

. literalinclude:: example.py
:encoding: latin-1

The directive also supports including only parts of the file. If it is a Python module, you can select a class,
function or method to include using the pyobject option:

. literalinclude:: example.py
:pyobject: Timer.start

This would only include the code lines belonging to the start () method in the Timer class within the file.

Alternately, you can specify exactly which lines to include by giving a 1ines option:

. literalinclude:: example.py
:lines: 1,3,5-10,20-

This includes the lines 1, 3, 5 to 10 and lines 20 to the last line.

Another way to control which part of the file is included is to use the start-after and end-before options (or
only one of them). If start-after is given as a string option, only lines that follow the first line containing that
string are included. If end-before is given as a string option, only lines that precede the first lines containing
that string are included. The start-at and end-at options behave in a similar way, but the lines containing the
matched string are included.

start-after/start-at and end-before/end-at can have same string. start-after/start-at filter lines
before the line that contains option string (start-at will keep the line). Then end-before/end-at filter lines
after the line that contains option string (end-at will keep the line and end-before skip the first line).

Note: If you want to select only [second-section] of ini file like the following, you can use :start-at:
[second-section] and :end-before: [third-section]:

[first-section]
var_in_first=true
[second-section]
var_in_second=true

[third-section]

var_in_third=true

Useful cases of these option is working with tag comments. :start-after: [initialized] and
:end-before: [initialized] options keep lines between comments:

1.3. reStructuredText 35

Sphinx Documentation, Release 4.0.0+

if __name__ == "__main__
[initialize]
app.start(":8000")
[initialize]

When lines have been selected in any of the ways described above, the line numbers in emphasize-1lines refer
to those selected lines, counted consecutively starting at 1.

When specifying particular parts of a file to display, it can be useful to display the original line numbers. This
can be done using the 1ineno-match option, which is however allowed only when the selection consists of
contiguous lines.

You can prepend and/or append a line to the included code, using the prepend and append option, respectively.
This is useful e.g. for highlighting PHP code that doesn’t include the <?php/?> markers.

If you want to show the diff of the code, you can specify the old file by giving a diff option:

. literalinclude:: example.py
:diff: example.py.orig

This shows the diff between example.py and example.py.orig with unified diff format.
A force option can ignore minor errors on highlighting.
Changed in version 0.4.3: Added the encoding option.

Changed in version 0.6: Added the pyobject, lines, start-after and end-before options, as well as
support for absolute filenames.

Changed in version 1.0: Added the prepend, append, and tab-width options.
Changed in version 1.3: Added the diff, lineno-match, caption, name, and dedent options.
Changed in version 1.5: Added the start-at, and end-at options.

Changed in version 1.6: With both start-after and lines in use, the first line as per start-after is con-
sidered to be with line number 1 for 1ines.

Changed in version 2.1: Added the force option.

Changed in version 3.5: Support automatic dedent.
Glossary
. glossary::

This directive must contain a reST definition-list-like markup with terms and definitions. The definitions will
then be referenceable with the term role. Example:

. glossary::

environment
A structure where information about all documents under the root is
saved, and used for cross-referencing. The environment is pickled
after the parsing stage, so that successive runs only need to read
and parse new and changed documents.

source directory

(continues on next page)

115 There is a standard .. include directive, but it raises errors if the file is not found. This one only emits a warning.

36 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

The directory which, including its subdirectories, contains all
source files for one Sphinx project.

In contrast to regular definition lists, multiple terms per entry are allowed, and inline markup is allowed in terms.
You can link to all of the terms. For example:

glossary::

term 1
term 2
Definition of both terms.

(When the glossary is sorted, the first term determines the sort order.)

If you want to specify “grouping key” for general index entries, you can put a “key” as “term : key”. For example:

glossary::

term 1 : A
term 2 : B
Definition of both terms.

Note that “key” is used for grouping key as is. The “key” isn’t normalized; key “A” and “a” become different
groups. The whole characters in “key” is used instead of a first character; it is used for “Combining Character
Sequence” and “Surrogate Pairs” grouping key.

In i18n situation, you can specify “localized term : key” even if original text only have “term” part. In this case,
translated “localized term” will be categorized in “key” group.

New in version 0.6: You can now give the glossary directive a :sorted: flag that will automatically sort the
entries alphabetically.

Changed in version 1.1: Now supports multiple terms and inline markup in terms.

Changed in version 1.4: Index key for glossary term should be considered experimental.
Meta-information markup
sectionauthor:: name <email>

Identifies the author of the current section. The argument should include the author’s name such that it can be
used for presentation and email address. The domain name portion of the address should be lower case. Example:

sectionauthor:: Guido van Rossum <guido@python.org>

By default, this markup isn’t reflected in the output in any way (it helps keep track of contributions), but you can
set the configuration value show_authors to True to make them produce a paragraph in the output.

. codeauthor:: name <email>
The codeauthor directive, which can appear multiple times, names the authors of the described code, just
like sectionauthor names the author(s) of a piece of documentation. It too only produces output if the
show_authors configuration value is True.

1.3. reStructuredText 37

Sphinx Documentation, Release 4.0.0+

Index-generating markup

Sphinx automatically creates index entries from all object descriptions (like functions, classes or attributes) like dis-
cussed in Domains.

However, there is also explicit markup available, to make the index more comprehensive and enable index entries in
documents where information is not mainly contained in information units, such as the language reference.

index:: <entries>

This directive contains one or more index entries. Each entry consists of a type and a value, separated by a colon.

For example:

index::
single: execution; context
module: __main__

module: sys
triple: module; search; path

The execution context

This directive contains five entries, which will be converted to entries in the generated index which link to the
exact location of the index statement (or, in case of offline media, the corresponding page number).

Since index directives generate cross-reference targets at their location in the source, it makes sense to put them
before the thing they refer to — e.g. a heading, as in the example above.

The possible entry types are:

single Creates a single index entry. Can be made a subentry by separating the subentry text with a semicolon
(this notation is also used below to describe what entries are created).

pair pair: loop; statement is a shortcut that creates two index entries, namely loop; statement and
statement; loop.

triple Likewise, triple: module; search; path is a shortcut that creates three index entries, which are
module; search path, search; path, module and path; module search.

see see: entry; other creates an index entry that refers from entry to other.
seealso Like see, but inserts “see also” instead of “see”.

module, keyword, operator, object, exception, statement, builtin These all create two index entries. For ex-
ample, module: hashlib creates the entries module; hashlib and hashlib; module. (These are
Python-specific and therefore deprecated.)

You can mark up “main” index entries by prefixing them with an exclamation mark. The references to “main”
entries are emphasized in the generated index. For example, if two pages contain

index:: Python

and one page contains

index:: ! Python

then the backlink to the latter page is emphasized among the three backlinks.

For index directives containing only “single” entries, there is a shorthand notation:

38

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

. index:: BNF, grammar, syntax, notation

This creates four index entries.
Changed in version 1.1: Added see and seealso types, as well as marking main entries.
options

:name: a label for hyperlink (text)
Define implicit target name that can be referenced by using ref. For example:

. index:: Python
:name: py-index

New in version 3.0.

:index:
While the index directive is a block-level markup and links to the beginning of the next paragraph, there is also
a corresponding role that sets the link target directly where it is used.

The content of the role can be a simple phrase, which is then kept in the text and used as an index entry. It can
also be a combination of text and index entry, styled like with explicit targets of cross-references. In that case,
the “target” part can be a full entry as described for the directive above. For example:

This is a normal reST :index: paragraph that contains several
:index: index entries <pair: index; entry>.

New in version 1.1.

Including content based on tags

. only:: <expression>
Include the content of the directive only if the expression is true. The expression should consist of tags, like this:

. only:: html and draft

Undefined tags are false, defined tags (via the -t command-line option or within conf.py, see here) are true.
Boolean expressions, also using parentheses (like html and (latex or draft)) are supported.

The format and the name of the current builder (html, latex or text) are always set as a tag''°. To make the
distinction between format and name explicit, they are also added with the prefix format_ and builder_, e.g.
the epub builder defines the tags html, epub, format_html and builder_epub.

These standard tags are set after the configuration file is read, so they are not available there.

All tags must follow the standard Python identifier syntax as set out in the Identifiers and keywords'® docu-
mentation. That is, a tag expression may only consist of tags that conform to the syntax of Python variables. In
ASCII, this consists of the uppercase and lowercase letters A through Z, the underscore _ and, except for the first
character, the digits O through 9.

New in version 0.6.

Changed in version 1.2: Added the name of the builder and the prefixes.

Warning: This directive is designed to control only content of document. It could not control sections,
labels and so on.

1.3. reStructuredText 39

https://docs.python.org/3/reference/lexical_analysis.html#identifiers

Sphinx Documentation, Release 4.0.0+

Tables

Use reStructuredText tables, i.e. either
» grid table syntax (ref'’®),

« simple table syntax (ref'""),

108

e csv-table™® syntax,

~109

* or list-table”” syntax.

The table'' directive serves as optional wrapper of the grid and simple syntaxes.

They work fine in HTML output, however there are some gotchas when using tables in LaTeX: the column width is
hard to determine correctly automatically. For this reason, the following directive exists:

tabularcolumns:: column spec
This directive gives a “column spec” for the next table occurring in the source file. The spec is the second
argument to the LaTeX tabulary package’s environment (which Sphinx uses to translate tables). It can have
values like

[111]1]

which means three left-adjusted, nonbreaking columns. For columns with longer text that should automatically
be broken, use either the standard p{width} construct, or tabulary’s automatic specifiers:

flush left column with automatic width
flush right column with automatic width
centered column with automatic width
justified column with automatic width

Il

The automatic widths of the LRCJ columns are attributed by tabulary in proportion to the observed shares in
a first pass where the table cells are rendered at their natural “horizontal” widths.

By default, Sphinx uses a table layout with J for every column.
New in version 0.3.

Changed in version 1.6: Merged cells may now contain multiple paragraphs and are much better handled, thanks
to custom Sphinx LaTeX macros. This novel situation motivated the switch to J specifier and not L by default.

Hint: Sphinx actually uses T specifier having done \newcolumntype{T}{J}. To revert to previous default,
insert \newcolumntype{T}{L} in the LaTeX preamble (see latex_elements).

A frequent issue with tabulary is that columns with little contents are “squeezed”. The minimal column width
is a tabulary parameter called \tymin. You may set it globally in the LaTeX preamble via \setlength{\
tymin}{40pt} for example.

Else, use the tabularcolumns directive with an explicit p{40pt} (for example) for that column. You may use
also 1 specifier but this makes the task of setting column widths more difficult if some merged cell intersects that
column.

116 For most builders name and format are the same. At the moment only builders derived from the html builder distinguish between the builder
format and the builder name.

Note that the current builder tag is not available in conf. py, it is only available after the builder is initialized.

105 https://docs.python.org/3/reference/lexical_analysis.html#identifiers

106 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables

107 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext. html#simple-tables

108 http://docutils.sourceforge.net/docs/ref/rst/directives. html#csv-table

109 hitp://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table

110 http://docutils.sourceforge.net/docs/ref/rst/directives. html#table

40 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables
http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

Sphinx Documentation, Release 4.0.0+

Warning: Tables with more than 30 rows are rendered using longtable, not tabulary, in order to allow
pagebreaks. The L, R, ... specifiers do not work for these tables.

Tables that contain list-like elements such as object descriptions, blockquotes or any kind of lists cannot be
set out of the box with tabulary. They are therefore set with the standard LaTeX tabular (or longtable)
environment if you don’t give a tabularcolumns directive. If you do, the table will be set with tabulary
but you must use the p{width} construct (or Sphinx’s \X and \Y specifiers described below) for the columns
containing these elements.

Literal blocks do not work with tabulary at all, so tables containing a literal block are always set with
tabular. The verbatim environment used for literal blocks only works in p{width} (and \X or \Y) columns,
hence Sphinx generates such column specs for tables containing literal blocks.

Since Sphinx 1.5, the \X{a}{b} specifier is used (there is a backslash in the specifier letter). It is like p{width}
with the width set to a fraction a/b of the current line width. You can use it in the tabularcolumns (it is not a
problem if some LaTeX macro is also called \X.)

It is not needed for b to be the total number of columns, nor for the sum of the fractions of the \X specifiers to
add up to one. For example |[\X{2}{5} |\X{1}{5}|\X{1}{5}]| is legitimate and the table will occupy 80% of
the line width, the first of its three columns having the same width as the sum of the next two.

This is used by the :widths: option of the table'!! directive.

Since Sphinx 1.6, there is also the \Y{£f} specifier which admits a decimal argument, such has \Y{0.15}: this
would have the same effect as \X{33}{20}.

Changed in version 1.6: Merged cells from complex grid tables (either multi-row, multi-column, or both) now
allow blockquotes, lists, literal blocks, ... as do regular cells.

Sphinx’s merged cells interact well with p{width}, \X{a}{b}, \Y{£f} and tabulary’s columns.

Note: tabularcolumns conflicts with :widths: option of table directives. If both are specified, :widths:
option will be ignored.

Math

The input language for mathematics is LaTeX markup. This is the de-facto standard for plain-text math notation and
has the added advantage that no further translation is necessary when building LaTeX output.

Keep in mind that when you put math markup in Python docstrings read by autodoc, you either have to double all
backslashes, or use Python raw strings (r"'raw").

. math::
Directive for displayed math (math that takes the whole line for itself).

The directive supports multiple equations, which should be separated by a blank line:

. math::
(a + b)A2 = a*2 + 2ab + b*2
(a - b)A2 = a*2 - 2ab + b*2

In addition, each single equation is set within a split environment, which means that you can have multiple
aligned lines in an equation, aligned at & and separated by \\:

1T hitp://docutils.sourceforge.net/docs/ref/rst/directives. html#table

1.3. reStructuredText 41

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

Sphinx Documentation, Release 4.0.0+

. math::

(a + b)*2 & (a + b)(a + b) \\
&= a*2 + 2ab + bA2

For more details, look into the documentation of the AmSMath LaTeX package''%.

When the math is only one line of text, it can also be given as a directive argument:

. math:: (a + b)*2 = a*2 + 2ab + b*2

Normally, equations are not numbered. If you want your equation to get a number, use the 1abel option. When
given, it selects an internal label for the equation, by which it can be cross-referenced, and causes an equation
number to be issued. See eq for an example. The numbering style depends on the output format.

There is also an option nowrap that prevents any wrapping of the given math in a math environment. When you
give this option, you must make sure yourself that the math is properly set up. For example:

. math::
:nowrap:

\begin{egnarray}
y & = & ax*2 + bx + c \\
f(x) & = & xX*2 + 2xy + y*2
\end{eqgnarray}

See also:
Math support for HTML outputs in Sphinx Rendering options for math with HTML builders.

latex_engine Explains how to configure LaTeX builder to support Unicode literals in math mark-up.

Grammar production displays

Special markup is available for displaying the productions of a formal grammar. The markup is simple and does not
attempt to model all aspects of BNF (or any derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to the definition of the symbol. There is
this directive:

. productionlist:: [productionGroup]
This directive is used to enclose a group of productions. Each production is given on a single line and consists of a
name, separated by a colon from the following definition. If the definition spans multiple lines, each continuation
line must begin with a colon placed at the same column as in the first line. Blank lines are not allowed within
productionlist directive arguments.

The definition can contain token names which are marked as interpreted text (e.g., “sum ::= “integer "+
“integer”) — this generates cross-references to the productions of these tokens. Outside of the production list,
you can reference to token productions using token.

The productionGroup argument to productionlist serves to distinguish different sets of production lists that
belong to different grammars. Multiple production lists with the same productionGroup thus define rules in the
same scope.

Inside of the production list, tokens implicitly refer to productions from the current group. You can re-
fer to the production of another grammar by prefixing the token with its group name and a colon, e.g,
“otherGroup:sum”. If the group of the token should not be shown in the production, it can be prefixed by

112 hitps://www.ams.org/publications/authors/tex/amslatex

42 Chapter 1. Using Sphinx

https://www.ams.org/publications/authors/tex/amslatex

Sphinx Documentation, Release 4.0.0+

a tilde, e.g., “~otherGroup:sum”. To refer to a production from an unnamed grammar, the token should be
prefixed by a colon, e.g., “:sum”.

Outside of the production list, if you have given a productionGroup argument you must prefix the token name in
the cross-reference with the group name and a colon, e.g., “myGroup: sum” instead of just “sum”. If the group
should not be shown in the title of the link either an explicit title can be given (e.g., “myTitle <myGroup:sum>"),
or the target can be prefixed with a tilde (e.g., “~myGroup : sum”).

Note that no further reST parsing is done in the production, so that you don’t have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

. productionlist::
try_stmt: tryl_stmt | try2_stmt

tryl_stmt: "try" ":" ‘suite’
("except" [expression ["," “target]] ":" ‘suite)+
["else" ":" "suite’]
["finally" ":" “suite]
try2_stmt: "try" ":" ‘suite’
: "finally" ":" “suite’

Field Lists

As previously discussed, field lists are sequences of fields marked up like this:

:fieldname: Field content

Sphinx extends standard docutils behavior for field lists and adds some extra functionality that is covered in this section.

Note: The values of field lists will be parsed as strings. You cannot use Python collections such as lists or dictionaries.

File-wide metadata

A field list near the top of a file is normally parsed by docutils as the docinfo and shown on the page. However, in
Sphinx, a field list preceding any other markup is moved from the docinfo to the Sphinx environment as document
metadata, and is not displayed in the output.

Note: A field list appearing after the document title will be part of the docinfo as normal and will be displayed in the
output.

Special metadata fields

Sphinx provides custom behavior for bibliographic fields compared to docutils.
At the moment, these metadata fields are recognized:

tocdepth The maximum depth for a table of contents of this file.

:tocdepth: 2

1.3. reStructuredText 43

Sphinx Documentation, Release 4.0.0+

Note: This metadata effects to the depth of local toctree. But it does not effect to the depth of global toctree.
So this would not be change the sidebar of some themes which uses global one.

New in version 0.4.

nocomments If set, the web application won’t display a comment form for a page generated from this source file.

:nocomments:

orphan If set, warnings about this file not being included in any toctree will be suppressed.

:orphan:

New in version 1.0.

nosearch If set, full text search for this file is disabled.

:nosearch:

Note: object search is still available even if nosearch option is set.

New in version 3.0.

Domains

New in version 1.0.

Originally, Sphinx was conceived for a single project, the documentation of the Python language. Shortly afterwards,
it was made available for everyone as a documentation tool, but the documentation of Python modules remained deeply
built in — the most fundamental directives, like function, were designed for Python objects. Since Sphinx has become
somewhat popular, interest developed in using it for many different purposes: C/C++ projects, JavaScript, or even
reStructuredText markup (like in this documentation).

While this was always possible, it is now much easier to easily support documentation of projects using different
programming languages or even ones not supported by the main Sphinx distribution, by providing a domain for every
such purpose.

A domain is a collection of markup (reStructuredText directives and roles) to describe and link to objects belonging to-
gether, e.g. elements of a programming language. Directive and role names in a domain have names like domain:name,
e.g. py: function. Domains can also provide custom indices (like the Python Module Index).

Having domains means that there are no naming problems when one set of documentation wants to refer to e.g. C++
and Python classes. It also means that extensions that support the documentation of whole new languages are much
easier to write.

This section describes what the domains that are included with Sphinx provide. The domain API is documented as
well, in the section Domain API.

44 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Basic Markup

Most domains provide a number of object description directives, used to describe specific objects provided by modules.
Each directive requires one or more signatures to provide basic information about what is being described, and the
content should be the description. A domain will typically keep an internal index of all entites to aid cross-referencing.
Typically it will also add entries in the shown general index. If you want to suppress the addition of an entry in the
shown index, you can give the directive option flag :noindexentry:. If you want to typeset an object description,
without even making it available for cross-referencing, you can give the directive option flag :noindex: (which implies
:noindexentry:). Though, note that not every directive en every domain may support these options.

New in version 3.2: The directive option noindexentry in the Python, C, C++, and Javascript domains.

An example using a Python domain directive:

. py:function:: spam(eggs)
ham(eggs)

Spam or ham the foo.

This describes the two Python functions spam and ham. (Note that when signatures become too long, you can break
them if you add a backslash to lines that are continued in the next line. Example:

. py:function:: filterwarnings(action, message='', category=Warning, \
module="'"', lineno=0, append=False)
:noindex:

(This example also shows how to use the :noindex: flag.)

The domains also provide roles that link back to these object descriptions. For example, to link to one of the functions
described in the example above, you could say

The function :py:func: spam does a similar thing.

As you can see, both directive and role names contain the domain name and the directive name.

Default Domain

For documentation describing objects from solely one domain, authors will not have to state again its name at each
directive, role, etc... after having specified a default. This can be done either via the config value primary_domain
or via this directive:

. default-domain:: name
Select a new default domain. While the primary_domain selects a global default, this only has an effect within
the same file.

If no other default is selected, the Python domain (named py) is the default one, mostly for compatibility with docu-
mentation written for older versions of Sphinx.

Directives and roles that belong to the default domain can be mentioned without giving the domain name, i.e.

function:: pyfunc()
Describes a Python function.

Reference to :func: pyfunc .

1.3. reStructuredText 45

Sphinx Documentation, Release 4.0.0+

Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for general cross-references. See Cross-
referencing syntax.

In short:

* You may supply an explicit title and reference target: :role: title <target>" will refer to rarget, but the
link text will be title.

* If you prefix the content with !, no reference/hyperlink will be created.

e If you prefix the content with ~, the link text will only be the last component of the target. For example,
:py:meth: ~Queue.Queue.get will refer to Queue.Queue.get but only display get as the link text.

The Python Domain

The Python domain (name py) provides the following directives for module declarations:

. py:module:: name
This directive marks the beginning of the description of a module (or package submodule, in which case the
name should be fully qualified, including the package name). It does not create content (like e.g. py:class
does).

This directive will also cause an entry in the global module index.

options

:platform: platforms (comma separated list)
Indicate platforms which the module is available (if it is available on all platforms, the option should be
omitted). The keys are short identifiers; examples that are in use include “IRIX”, “Mac”, “Windows” and
“Unix”. It is important to use a key which has already been used when applicable.

:synopsis: purpose (text)
Consist of one sentence describing the module’s purpose — it is currently only used in the Global Module
Index.

:deprecated: (no argument)
Mark a module as deprecated; it will be designated as such in various locations then.

. py:currentmodule:: name
This directive tells Sphinx that the classes, functions etc. documented from here are in the given module (like
py :module), but it will not create index entries, an entry in the Global Module Index, or a link target for py : mod.
This is helpful in situations where documentation for things in a module is spread over multiple files or sections
— one location has the py:module directive, the others only py:currentmodule.

The following directives are provided for module and class contents:

. py:function:: name(parameters)
Describes a module-level function. The signature should include the parameters as given in the Python function
definition, see Python Signatures. For example:

. py:function:: Timer.repeat(repeat=3, number=1000000)

For methods you should use py :method.

The description normally includes information about the parameters required and how they are used (especially
whether mutable objects passed as parameters are modified), side effects, and possible exceptions.

This information can (in any py directive) optionally be given in a structured form, see Info field lists.

46 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

options

:async: (no value)
Indicate the function is an async function.
New in version 2.1.

:canonical: (full qualified name including module name)
Describe the location where the object is defined if the object is imported from other modules

New in version 4.0.

. py:data:: name

Describes global data in a module, including both variables and values used as “defined constants.” Class and
object attributes are not documented using this environment.

options
:type: type of the variable (text)
New in version 2.4.

:value: initial value of the variable (text)
New in version 2.4.

:canonical: (full qualified name including module name)
Describe the location where the object is defined if the object is imported from other modules

New in version 4.0.

. py:exception:: name

Describes an exception class. The signature can, but need not include parentheses with constructor arguments.

options

:final: (no value)
Indicate the class is a final class.

New in version 3.1.

. py:class:: name
. py:class:: name(parameters)

Describes a class. The signature can optionally include parentheses with parameters which will be shown as the
constructor arguments. See also Python Signatures.

Methods and attributes belonging to the class should be placed in this directive’s body. If they are placed outside,
the supplied name should contain the class name so that cross-references still work. Example:

. py:class:: Foo
. py:method:: quux()
—— or --
. py:class:: Bar

. py:method:: Bar.quux()

The first way is the preferred one.

1.3.

reStructuredText 47

Sphinx Documentation, Release 4.0.0+

options

:canonical: (full qualified name including module name)
Describe the location where the object is defined if the object is imported from other modules
New in version 4.0.

:final: (no value)
Indicate the class is a final class.

New in version 3.1.

. py:attribute:: name
Describes an object data attribute. The description should include information about the type of the data to be
expected and whether it may be changed directly.

options
:type: type of the attribute (text)
New in version 2.4.

:value: initial value of the attribute (text)
New in version 2.4.

:canonical: (full qualified name including module name)
Describe the location where the object is defined if the object is imported from other modules

New in version 4.0.

. py:method:: name(parameters)
Describes an object method. The parameters should not include the self parameter. The description should
include similar information to that described for function. See also Python Signatures and Info field lists.

options

:abstractmethod: (no value)
Indicate the method is an abstract method.
New in version 2.1.

:async: (no value)
Indicate the method is an async method.

New in version 2.1.

:canonical: (full qualified name including module name)
Describe the location where the object is defined if the object is imported from other modules

New in version 4.0.

:classmethod: (no value)
Indicate the method is a class method.

New in version 2.1.

:final: (no value)
Indicate the class is a final method.

New in version 3.1.

:property: (no value)
Indicate the method is a property.

New in version 2.1.

48 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

:staticmethod: (no value)
Indicate the method is a static method.

New in version 2.1.

. py:staticmethod:: name(parameters)
Like py :method, but indicates that the method is a static method.

New in version 0.4.

. py:classmethod:: name(parameters)
Like py :method, but indicates that the method is a class method.

New in version 0.6.

. py:decorator:: name
. py:decorator:: name(parameters)
Describes a decorator function. The signature should represent the usage as a decorator. For example, given the

functions

def removename(func):
func. name_ = "'
return func

def setnewname(name):
def decorator(func):
func.__name__ = name
return func
return decorator

the descriptions should look like this:

. py:decorator:: removename
Remove name of the decorated function.
. py:decorator:: setnewname(name)

I

Set name of the decorated function to *name*.

(as opposed to .. py:decorator:: removename(func).)

There is no py:deco role to link to a decorator that is marked up with this directive; rather, use the py: func
role.

. py:decoratormethod:: name
. py:decoratormethod:: name(signature)
Same as py:decorator, but for decorators that are methods.

Refer to a decorator method using the py :meth role.

1.3. reStructuredText 49

Sphinx Documentation, Release 4.0.0+

Python Signatures

Signatures of functions, methods and class constructors can be given like they would be written in Python.

Default values for optional arguments can be given (but if they contain commas, they will confuse the signature parser).
Python 3-style argument annotations can also be given as well as return type annotations:

. py:function:: compile(source : string, filename, symbol='file') -> ast object

For functions with optional parameters that don’t have default values (typically functions implemented in C extension
modules without keyword argument support), you can use brackets to specify the optional parts:

compile (source [, ﬁlename[, symbol]])

It is customary to put the opening bracket before the comma.

Info field lists

New in version 0.4.
Changed in version 3.0: meta fields are added.
Inside Python object description directives, reST field lists with these fields are recognized and formatted nicely:
e param, parameter, arg, argument, key, keyword: Description of a parameter.
* type: Type of a parameter. Creates a link if possible.
* raises, raise, except, exception: That (and when) a specific exception is raised.
e var, ivar, cvar: Description of a variable.
» vartype: Type of a variable. Creates a link if possible.
e returns, return: Description of the return value.
* rtype: Return type. Creates a link if possible.

¢ meta: Add metadata to description of the python object. The metadata will not be shown on output document. For
example, :meta private: indicates the python object is private member. It is used in sphinx.ext.autodoc
for filtering members.

Note: In current release, all var, ivar and cvar are represented as “Variable”. There is no difference at all.

The field names must consist of one of these keywords and an argument (except for returns and rtype, which do not
need an argument). This is best explained by an example:

. py:function:: send_message(sender, recipient, message_body, [priority=1])
Send a message to a recipient

:param str sender: The person sending the message

:param str recipient: The recipient of the message

:param str message_body: The body of the message

:param priority: The priority of the message, can be a number 1-5
:type priority: integer or None

:return: the message id

:rtype: int

:raises ValueError: if the message_body exceeds 160 characters
:raises TypeError: if the message_body is not a basestring

50 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

This will render like this:

send_message (sender, recipient, message_body[, priority=1])
Send a message to a recipient

Parameters
« sender (str'!”) — The person sending the message
« recipient (str''®) — The recipient of the message
» message_body (str''”) — The body of the message

s priority (integer or None'’’)— The priority of the message, can be a number
1-5
Returns the message id

121

Return type int
Raises

« ValueError!??

— if the message_body exceeds 160 characters
« TypeError'? — if the message_body is not a basestring

It is also possible to combine parameter type and description, if the type is a single word, like this:

:param int priority: The priority of the message, can be a number 1-5

New in version 1.5.

Container types such as lists and dictionaries can be linked automatically using the following syntax:

:type priorities: list(int)
:type priorities: list[int]
:type mapping: dict(str, int)
:type mapping: dict[str, int]
:type point: tuple(float, float)
:type point: tuple[float, float]

il

Multiple types in a type field will be linked automatically if separated by the word “or”:

:type an_arg: int or None
:vartype a_var: str or int
:rtype: float or str

17 https://docs.python.org/3/library/stdtypes.html#str

118 https://docs.python.org/3/library/stdtypes.html#str

119 https://docs.python.org/3/library/stdtypes.html#str

120 https://docs.python.org/3/library/constants. html#None

121 https://docs.python.org/3/library/functions. html#int

122 https://docs.python.org/3/library/exceptions.html#ValueError
123 https://docs.python.org/3/library/exceptions.html#TypeError

1.3. reStructuredText 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

Sphinx Documentation, Release 4.0.0+

Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:

:py:mod:
Reference a module; a dotted name may be used. This should also be used for package names.

:py: func:
Reference a Python function; dotted names may be used. The role text needs not include trailing parentheses
to enhance readability; they will be added automatically by Sphinx if the add_function_parentheses config
value is True (the default).

:py:data:
Reference a module-level variable.

:py:const:
Reference a “defined” constant. This may be a Python variable that is not intended to be changed.

:py:class:
Reference a class; a dotted name may be used.

:py:meth:
Reference a method of an object. The role text can include the type name and the method name; if it occurs
within the description of a type, the type name can be omitted. A dotted name may be used.

ipy:attr:
Reference a data attribute of an object.

Ipy:exc:
Reference an exception. A dotted name may be used.

:py:obj:
Reference an object of unspecified type. Useful e.g. as the default_role.

New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name. For example, :py: func: filter"
could refer to a function named filter in the current module, or the built-in function of that name. In contrast,
:py:func: foo.filter" clearly refers to the filter function in the foo module.

Normally, names in these roles are searched first without any further qualification, then with the current module name
prepended, then with the current module and class name (if any) prepended. If you prefix the name with a dot, this
order is reversed. For example, in the documentation of Python’s codecs'? module, :py: func: open’ always refers
to the built-in function, while :py: func: " .open’ refers to codecs.open()'?.

A similar heuristic is used to determine whether the name is an attribute of the currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the target is taken as a suffix and all object
names with that suffix are searched. For example, :py:meth: " .TarFile.close" referencesthe tarfile.TarFile.
close() function, even if the current module is not tarfile. Since this can get ambiguous, if there is more than one
possible match, you will get a warning from Sphinx.

Note that you can combine the ~ and . prefixes: :py:meth: ~.TarFile.close will reference the tarfile.
TarFile.close() method, but the visible link caption will only be close().

124 https://docs.python.org/3/library/codecs.html#module-codecs
125 https://docs.python.org/3/library/codecs.html#codecs.open

52 Chapter 1. Using Sphinx

https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/library/codecs.html#codecs.open

Sphinx Documentation, Release 4.0.0+

The C Domain

The C domain (name c) is suited for documentation of C APIL.

. c:member:: declaration
. c:var:: declaration
Describes a C struct member or variable. Example signature:

c:member:: PyObject *PyTypeObject.tp_bases

The difference between the two directives is only cosmetic.

. c:function:: function prototype
Describes a C function. The signature should be given as in C, e.g.:

c:function:: PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

Note that you don’t have to backslash-escape asterisks in the signature, as it is not parsed by the reST inliner.

. Ccimacro:: name
. c:macro:: name(arg list)
Describes a C macro, i.e., a C-language #define, without the replacement text.

New in version 3.0: The function style variant.

. cistruct:: name
Describes a C struct.

New in version 3.0.

. c:union:: name
Describes a C union.

New in version 3.0.

. cienum:: name
Describes a C enum.

New in version 3.0.

. c:enumerator:: name
Describes a C enumerator.

New in version 3.0.

. c:type:: typedef-like declaration
. citype:: name
Describes a C type, either as a typedef, or the alias for an unspecified type.

Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are defined in the documentation:

:member:
:data:

:var:

:func:
imacro:
:struct:
:union:
renum:
:enumerator:

nonoo0oonoo0onnnan

1.3. reStructuredText 53

Sphinx Documentation, Release 4.0.0+

:Cc:type:
Reference a C declaration, as defined above. Note that ¢ :member, c:data, and c:var are equivalent.

New in version 3.0: The var, struct, union, enum, and enumerator roles.

Anonymous Entities

C supports anonymous structs, enums, and unions. For the sake of documentation they must be given some name that
starts with @, e.g., @42 or @data. These names can also be used in cross-references, though nested symbols will be
found even when omitted. The @. . . name will always be rendered as [anonymous] (possibly as a link).

Example:

c:struct:: Data
c:union:: @data
c:var:: int a
c:var:: double b

Explicit ref: :c:var: Data.@data.a . Short-hand ref: :c:var: Data.a .

This will be rendered as:

struct Data

union [anonymous]

int a
double b
Explicit ref: Data. [anonymous].a. Short-hand ref: Data.a.

New in version 3.0.

Aliasing Declarations

Sometimes it may be helpful list declarations elsewhere than their main documentation, e.g., when creating a synopsis
of an interface. The following directive can be used for this purpose.

. c:alias:: name
Insert one or more alias declarations. Each entity can be specified as they can in the c:any role.

For example:

c:var:: int data
c:function:: int f(double k)

c:alias:: data
f

becomes
int data
int £(double k)

54 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

int data
int f (double k)

New in version 3.2.

Options

:maxdepth: int
Insert nested declarations as well, up to the total depth given. Use O for infinite depth and 1 for just the
mentioned declaration. Defaults to 1.
New in version 3.3.

:noroot:
Skip the mentioned declarations and only render nested declarations. Requires maxdepth either O or at
least 2.

New in version 3.5.

Inline Expressions and Types

:c:expr:
:Cc:texpr:
Insert a C expression or type either as inline code (cpp: expr) or inline text (cpp: texpr). For example:

c:var:: int a = 42
c:function:: int f(int i)
An expression: :c:expr: a * f(a) (or as text: :c:texpr: a * f(a)).

A type: :c:expr: const Data*’
(or as text :c:texpr: const Data®).

will be rendered as follows:

inta=42

int £(int)

An expression: a * f(a) (or as text: a * f(a)).
A type: const Data* (or as text const Dara*).

New in version 3.0.

Namespacing

New in version 3.1.

The C language it self does not support namespacing, but it can sometimes be useful to emulate it in documentation, e.g.,
to show alternate declarations. The feature may also be used to document members of structs/unions/enums separate
from their parent declaration.

The current scope can be changed using three namespace directives. They manage a stack declarations where
c:namespace resets the stack and changes a given scope.

The c:namespace-push directive changes the scope to a given inner scope of the current one.

The c:namespace-pop directive undoes the most recent ¢ :namespace-push directive.

1.3. reStructuredText 55

Sphinx Documentation, Release 4.0.0+

. c:namespace:: scope specification
Changes the current scope for the subsequent objects to the given scope, and resets the namespace directive stack.
Note that nested scopes can be specified by separating with a dot, e.g.:

. C:namespace:: Namespacel.Namespace2.SomeStruct.AnInnerStruct

All subsequent objects will be defined as if their name were declared with the scope prepended. The subsequent
cross-references will be searched for starting in the current scope.

Using NULL or 0 as the scope will change to global scope.

. c:namespace-push:: scope specification
Change the scope relatively to the current scope. For example, after:

. c:namespace:: A.B

. c:namespace-push:: C.D

the current scope will be A.B.C.D.

. C:inamespace-pop::
Undo the previous c:namespace-push directive (not just pop a scope). For example, after:

. C:namespace:: A.B
. c:namespace-push:: C.D

. C:namespace-pop::

the current scope will be A.B (not A.B.C).

If no previous c :namespace-push directive has been used, but only a c:namespace directive, then the current
scope will be reset to global scope. That is, .. c:namespace:: A.Bis equivalent to:

. c:namespace:: NULL

. C:namespace-push:: A.B

Configuration Variables

See Options for the C domain.

The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

56 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Directives for Declaring Entities

The following directives are available. All declarations can start with a visibility statement (public, private or
protected).

. cpp:class:: class specifier
. cpp:struct:: class specifier
Describe a class/struct, possibly with specification of inheritance, e.g.,:

. cpp:class:: MyClass : public MyBase, MyOtherBase

The difference between cpp:class and cpp:struct is only cosmetic: the prefix rendered in the output, and
the specifier shown in the index.

The class can be directly declared inside a nested scope, e.g.,:

. cpp:class:: OuterScope::MyClass : public MyBase, MyOtherBase

A class template can be declared:

. cpp:class:: template<typename T, std::size_t N> std::array

or with a line break:

. cpp:class:: template<typename T, std::size_t N> \
std: :array

Full and partial template specialisations can be declared:

. cpp:class:: template<> \
std: :array<bool, 256>

. cpp:class:: template<typename T> \
std: :array<T, 42>

New in version 2.0: The cpp:struct directive.

. cpp:function:: (member) function prototype
Describe a function or member function, e.g.,:

. cpp:function:: bool myMethod(int argl, std::string arg2)
A function with parameters and types.

. cpp:function:: bool myMethod(int, double)
A function with unnamed parameters.

. cpp:function:: const T &MyClass::operator[](std::size_t i) const
An overload for the indexing operator.

. cpp:function:: operator bool() const

A casting operator.

(continues on next page)

1.3. reStructuredText 57

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

. cpp:function:: constexpr void foo(std::string &bar[2]) noexcept
A constexpr function.
. cpp:function:: MyClass::MyClass(const MyClass&) = default

A copy constructor with default implementation.

Function templates can also be described:

. cpp:function:: template<typename U> \
void print(U &&u)

and function template specialisations:

. cpp:function:: template<> \
void print(int i)

. cpp:member:: (member) variable declaration
. cpp:var:: (member) variable declaration
Describe a variable or member variable, e.g.,:

. cpp:member:: std::string MyClass::myMember
. cpp:var:: std::string MyClass: :myOtherMember [N] [M]

. cpp:member:: int a = 42

Variable templates can also be described:

. cpp:member:: template<class T> \
constexpr T pi = T(3.1415926535897932385)

. Ccpp:type:: typedef declaration
. Ccpp:type:: name
. Cpp:type:: type alias declaration
Describe a type as in a typedef declaration, a type alias declaration, or simply the name of a type with unspecified

type, e.g.,:

. Cpp:type:: std::vector<int> MyList
A typedef-like declaration of a type.
. cpp:type:: MyContainer::const_iterator
Declaration of a type alias with unspecified type.
. cpp:type:: MyType = std::unordered_map<int, std::string>

Declaration of a type alias.

A type alias can also be templated:

58 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

. Cpp:type:: template<typename T> \
MyContainer = std::vector<T>

The example are rendered as follows.

typedef std::vector<int> MyList
A typedef-like declaration of a type.

type MyContainer::const_iterator
Declaration of a type alias with unspecified type.

using MyType = std::unordered_map<int, std::string>
Declaration of a type alias.

template<typename T>
using MyContainer = std::vector<7>

. cpp:enum:: unscoped enum declaration

. Cpp:enum-struct:: scoped enum declaration

. cpp:enum-class:: scoped enum declaration
Describe a (scoped) enum, possibly with the underlying type specified. Any enumerators declared inside an
unscoped enum will be declared both in the enum scope and in the parent scope. Examples:

. cpp:enum:: MyEnum

An unscoped enum.
. cpp:enum:: MySpecificEnum : long

An unscoped enum with specified underlying type.
. cpp:enum-class:: MyScopedEnum

A scoped enum.

. cpp:enum-struct:: protected MyScopedVisibilityEnum : std::underlying_type
—<MySpecificEnum>: : type

A scoped enum with non-default visibility, and with a specified
underlying type.

. Cpp:enumerator:: name
. Cpp:enumerator:: name = constant
Describe an enumerator, optionally with its value defined, e.g.,:

. cpp:enumerator:: MyEnum::myEnumerator

. cpp:enumerator:: MyEnum::myOtherEnumerator = 42

. cpp:union:: name
Describe a union.

New in version 1.8.

. Cpp:concept:: template-parameter-list name

1.3. reStructuredText 59

Sphinx Documentation, Release 4.0.0+

Warning: The support for concepts is experimental. It is based on the current draft standard and the
Concepts Technical Specification. The features may change as they evolve.

Describe a concept. It must have exactly 1 template parameter list. The name may be a nested name. Example:

. cpp:concept:: template<typename It> std::Iterator

Proxy to an element of a notional sequence that can be compared,
indirected, or incremented.

Notation
. cpp:var:: It r
An lvalue.
Valid Expressions
- :cpp:expr: *r , when :cpp:expr: r is dereferenceable.

- :cpp:expr: ++r , with return type :cpp:expr: It& , when
:cpp:expr: r is incrementable.

This will render as follows:

template<typename It>
concept std::Iterator
Proxy to an element of a notional sequence that can be compared, indirected, or incremented.

Notation

Itr
An lvalue.

Valid Expressions
e *r when r is dereferenceable.
* ++r, with return type It&, when r is incrementable.

New in version 1.5.

Options

Some directives support options:
e :noindexentry:, see Basic Markup.

e :tparam-line-spec:, for templated declarations. If specified, each template parameter will be rendered on a
separate line.

New in version 1.6.

60 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Anonymous Entities

C++ supports anonymous namespaces, classes, enums, and unions. For the sake of documentation they must be given
some name that starts with @, e.g., @42 or @data. These names can also be used in cross-references and (type) expres-
sions, though nested symbols will be found even when omitted. The @. .. name will always be rendered as [anony-
mous] (possibly as a link).

Example:

. cpp:class:: Data
. Cpp:union:: @data
. cpp:var:: int a
. cpp:var:: double b

Explicit ref: :cpp:var: Data::@data::a . Short-hand ref: :cpp:var: Data::a .

This will be rendered as:

class Data

union [anonymous]

int a
double b
Explicit ref: Data:: [anonymous] : :a. Short-hand ref: Data: :a.

New in version 1.8.

Aliasing Declarations

Sometimes it may be helpful list declarations elsewhere than their main documentation, e.g., when creating a synopsis
of a class interface. The following directive can be used for this purpose.

. cpp:alias:: name or function signature
Insert one or more alias declarations. Each entity can be specified as they can in the cpp:any role. If the name
of a function is given (as opposed to the complete signature), then all overloads of the function will be listed.

For example:

. cpp:alias:: Data::a
overload_example::C::f

becomes

int a

void /' (double d) const
void f (double d)

void f (int i)

void f ()

whereas:

1.3. reStructuredText 61

Sphinx Documentation, Release 4.0.0+

. cpp:alias:: void overload_example::C::f(double d) const
void overload_example::C::f(double d)

becomes

void f (double d) const
void f (double d)

New in version 2.0.

Options

:maxdepth: int
Insert nested declarations as well, up to the total depth given. Use O for infinite depth and 1 for just the
mentioned declaration. Defaults to 1.

New in version 3.5.

:noroot:
Skip the mentioned declarations and only render nested declarations. Requires maxdepth either O or at
least 2.

New in version 3.5.

Constrained Templates

Warning: The support for concepts is experimental. It is based on the current draft standard and the Concepts
Technical Specification. The features may change as they evolve.

Note: Sphinx does not currently support requires clauses.

Placeholders

Declarations may use the name of a concept to introduce constrained template parameters, or the keyword auto to
introduce unconstrained template parameters:

. cpp:function:: void f(auto &&arg)
A function template with a single unconstrained template parameter.
. cpp:function:: void f(std::Iterator it)

A function template with a single template parameter, constrained by the
Iterator concept.

62 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Template Introductions

Simple constrained function or class templates can be declared with a template introduction instead of a template
parameter list:

. cpp:function:: std::Iterator{It} void advance(It &it)

A function template with a template parameter constrained to be an
Iterator.

. cpp:class:: std::LessThanComparable{T} MySortedContainer

A class template with a template parameter constrained to be
LessThanComparable.

They are rendered as follows.

std::Iterator{It}
void advance (/1 &it)
A function template with a template parameter constrained to be an Iterator.

std::LessThanComparable{T}
class MySortedContainer
A class template with a template parameter constrained to be LessThanComparable.

Note however that no checking is performed with respect to parameter compatibility. E.g., Iterator{A, B, C} will
be accepted as an introduction even though it would not be valid C++.

Inline Expressions and Types

:Cpp:expr:
:Ccpp:texpr:
Insert a C++ expression or type either as inline code (cpp: expr) or inline text (cpp: texpr). For example:

. cpp:var:: int a = 42
. cpp:function:: int f(int i)
An expression: :cpp:expr: a * f(a) (or as text: :cpp:texpr: a * f(a)).

A type: :cpp:expr: const MySortedContainer<int>&"
(or as text :cpp:texpr: const lMySortedContainer<int>&).

will be rendered as follows:

inta=42

int £(int)

An expression: a * f(a) (or as text: a * f(a)).

A type: const MySortedContainer<int>& (or as text const MySortedContainer<int>&).
New in version 1.7: The cpp:expr role.

New in version 1.8: The cpp: texpr role.

1.3. reStructuredText 63

Sphinx Documentation, Release 4.0.0+

Namespacing

Declarations in the C++ domain are as default placed in global scope. The current scope can be changed using three
namespace directives. They manage a stack declarations where cpp : namespace resets the stack and changes a given
scope.

The cpp:namespace-push directive changes the scope to a given inner scope of the current one.

The cpp:namespace-pop directive undoes the most recent cpp : namespace-push directive.

. Cpp:namespace:: scope specification

Changes the current scope for the subsequent objects to the given scope, and resets the namespace directive stack.
Note that the namespace does not need to correspond to C++ namespaces, but can end in names of classes, e.g.,:

. cpp:namespace:: Namespacel::Namespace2::SomeClass: :AnInnerClass

All subsequent objects will be defined as if their name were declared with the scope prepended. The subsequent
cross-references will be searched for starting in the current scope.

Using NULL, 0, or nullptr as the scope will change to global scope.

A namespace declaration can also be templated, e.g.,:

. cpp:class:: template<typename T> \
std: :vector

. Cpp:namespace:: template<typename T> std::vector

. cpp:function:: std::size_t size() const

declares size as a member function of the class template std: :vector. Equivalently this could have been
declared using:

. cpp:class:: template<typename T> \
std: :vector

. cpp:function:: std::size_t size() const

or:

. cpp:class:: template<typename T> \
std::vector

. cpp:namespace-push:: scope specification

Change the scope relatively to the current scope. For example, after:

. cpp:namespace:: A::B

. cpp:namespace-push:: C::D

the current scope will be A: :B: :C::D.

New in version 1.4.

. Cpp:namespace-pop::

Undo the previous cpp :namespace-push directive (not just pop a scope). For example, after:

64

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

. Cpp:namespace:: A::B
. cpp:namespace-push:: C::D

. Cpp:namespace-pop::

the current scope will be A: :B (not A: :B::C).

If no previous cpp:namespace-push directive has been used, but only a cpp:namespace directive, then the
current scope will be reset to global scope. Thatis, .. cpp:namespace:: A::Bis equivalent to:

. Ccpp:namespace:: nullptr

. cpp:namespace-push:: A::B

New in version 1.4.

Info field lists

The C++ directives support the following info fields (see also Info field lists):
* param, parameter, arg, argument: Description of a parameter.
* tparam: Description of a template parameter.
* returns, return: Description of a return value.

* throws, throw, exception: Description of a possibly thrown exception.

Cross-referencing

These roles link to the given declaration types:

icpp:any:

:cpp:class:

:cpp:struct:

:cpp: func:

:cpp:member:

icpp:var:

:cpp:type:

:Ccpp:concept:

:Cpp:enum:

:Ccpp:enumerator:
Reference a C++ declaration by name (see below for details). The name must be properly qualified relative to
the position of the link.

New in version 2.0: The cpp:struct role as alias for the cpp:class role.

Note on References with Templates Parameters/Arguments

These roles follow the Sphinx Cross-referencing syntax rules. This means care must be taken when referencing a
(partial) template specialization, e.g. if the link looks like this: :cpp:class: MyClass<int>". This is interpreted
as a link to int with a title of MyClass. In this case, escape the opening angle bracket with a backslash, like this:
:cpp:class: MyClass\<int>".

1.3. reStructuredText 65

Sphinx Documentation, Release 4.0.0+

When a custom title is not needed it may be useful to use the roles for inline expressions, cpp: expr and cpp: texpr,
where angle brackets do not need escaping.

Declarations without template parameters and template arguments

For linking to non-templated declarations the name must be a nested name, e.g., f or MyClass: : £.

Overloaded (member) functions

When a (member) function is referenced using just its name, the reference will point to an arbitrary matching overload.
The cpp:any and cpp: func roles use an alternative format, which simply is a complete function declaration. This
will resolve to the exact matching overload. As example, consider the following class declaration:

class C

void £ (double d) const
void f (double d)
void f(int i)
void £O)
References using the cpp: func role:
* Arbitrary overload: C:: £, C: : £()
* Also arbitrary overload: C:: £(), C:: £
* Specific overload: void C::£(), void C::£()
¢ Specific overload: void C::f(int), void C::f(int)
* Specific overload: void C::f(double), void C::f(double)
 Specific overload: void C::f(double) const, void C::f(double) const

Note that the add_function_parentheses configuration variable does not influence specific overload references.

Templated declarations

Assume the following declarations.

class Wrapper

template<typename TOuter>
class Outer

template<typename TInner>
class Inner

In general the reference must include the template parameter declarations, and template arguments for the prefix of
qualified names. For example:

e template\<typename TOuter> Wrapper::Outer (template<typename TOuter> Wrapper::0Outer)

* template\<typename TOuter> template\<typename TInner> Wrapper: :Outer<TOuter>::Inner
(template<typename TOuter> template<typename TInner> Wrapper::Outer<TOuter>::Inner)

66 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Currently the lookup only succeed if the template parameter identifiers are equal strings. That is, template\
<typename UOuter> Wrapper: :Outer will not work.

As a shorthand notation, if a template parameter list is omitted, then the lookup will assume either a primary template
or a non-template, but not a partial template specialisation. This means the following references work as well:

e Wrapper: :Outer (Wrapper: :Outer)
e Wrapper: :Outer: :Inner (Wrapper: :Outer: :Inner)

e template\<typename TInner> Wrapper::Outer::Inner (template<typename TInner>
Wrapper: :Outer: :Inner)

(Full) Template Specialisations

Assume the following declarations.

template<typename TOuter>
class Outer

template<typename TInner>
class Inner

template<>
class Outer<int>

template<typename TInner>
class Inner

template<>
class Inner<bool>

In general the reference must include a template parameter list for each template argument list. The full specialisation
above can therefore be referenced with template\<> Outer\<int> (template<> Outer<int>)and template\<>
template\<> Outer\<int>::Inner\<bool> (template<> template<> Outer<int>::Inner<bool>). As a
shorthand the empty template parameter list can be omitted, e.g., Outer\<int> (Outer<int>) and Outer\
<int>::Inner\<bool> (Outer<int>::Inner<bool>).

Partial Template Specialisations

Assume the following declaration.

template<typename T>
class Outer<7*>

References to partial specialisations must always include the template parameter lists, e.g., template\<typename T>
Outer\<T*> (template<typename T> Outer<T*>). Currently the lookup only succeed if the template parameter
identifiers are equal strings.

1.3. reStructuredText 67

Sphinx Documentation, Release 4.0.0+

Configuration Variables

See Options for the C++ domain.

The Standard Domain

The so-called “standard” domain collects all markup that doesn’t warrant a domain of its own. Its directives and roles
are not prefixed with a domain name.

The standard domain is also where custom object descriptions, added using the add_object_type () API, are placed.

There is a set of directives allowing documenting command-line programs:

option:: name args, name args,
Describes a command line argument or switch. Option argument names should be enclosed in angle brackets.
Examples:

option:: dest_dir
Destination directory.
option:: -m <module>, --module <module>

Run a module as a script.

The directive will create cross-reference targets for the given options, referenceable by option (in the example
case, you’d use something like :option: dest_dir", :option: -m’, or :option: --module’).

cmdoption directive is a deprecated alias for the option directive.

envvar:: name
Describes an environment variable that the documented code or program uses or defines. Referenceable by
envvar.

. program:: name

Like py : currentmodule, this directive produces no output. Instead, it serves to notify Sphinx that all following
option directives document options for the program called name.

If you use program, you have to qualify the references in your option roles by the program name, so if you
have the following situation

. program:: rm
option:: -r
Work recursively.

. program:: svn
option:: -r revision

Specify the revision to work upon.

then :option: rm -r’ would refer to the first option, while :option: svn -r° would refer to the second
one.

The program name may contain spaces (in case you want to document subcommands like svn add and svn
commit separately).

68

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

New in version 0.5.
There is also a very generic object description directive, which is not tied to any domain:

. describe:: text

. object:: text
This directive produces the same formatting as the specific ones provided by domains, but does not create index
entries or cross-referencing targets. Example:

. describe:: PAPER

You can set this variable to select a paper size.

The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

. js:module:: name
This directive sets the module name for object declarations that follow after. The module name is used in the
global module index and in cross references. This directive does not create an object heading like py:class
would, for example.

By default, this directive will create a linkable entity and will cause an entry in the global module index, unless
the noindex option is specified. If this option is specified, the directive will only update the current module
name.

New in version 1.6.

. js:function:: name(signature)
Describes a JavaScript function or method. If you want to describe arguments as optional use square brackets as
documented for Python signatures.

You can use fields to give more details about arguments and their expected types, errors which may be thrown
by the function, and the value being returned:

. js:function:: $.get]SON(href, callback[, errback])

:param string href: An URI to the location of the resource.
:param callback: Gets called with the object.
:param errback:
Gets called in case the request fails. And a lot of other
text so we need multiple lines.
:throws SomeError: For whatever reason in that case.
:returns: Something.

This is rendered as:

$.9etISON (href, callback [, errback])

Arguments
e href (string) — An URI to the location of the resource.
» callback — Gets called with the object.
» errback — Gets called in case the request fails. And a lot of other text so we need

multiple lines.
Throws SomeError — For whatever reason in that case.
Returns Something.

. js:method:: name(signature)
This directive is an alias for js:function, however it describes a function that is implemented as a method on
a class object.

1.3. reStructuredText 69

Sphinx Documentation, Release 4.0.0+

New in version 1.6.

. js:class:: name
Describes a constructor that creates an object. This is basically like a function but will show up with a class
prefix:

. js:class:: MyAnimal (name[, age])

:param string name: The name of the animal
:param number age: an optional age for the animal

This is rendered as:

class MyAnimal (name[, age])
Arguments
e name (string) — The name of the animal
* age (number) — an optional age for the animal

. js:data:: name
Describes a global variable or constant.

. js:attribute:: object.name
Describes the attribute name of object.

These roles are provided to refer to the described objects:
:js:mod:

:js:func:

:js:meth:

:js:class:

:js:data:

:js:attr:

The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

. rst:directive:: name
Describes a reST directive. The name can be a single directive name or actual directive syntax (.. prefix and .:
suffix) with arguments that will be rendered differently. For example:

. rst:directive:: foo
Foo description.

. rst:directive:: .. bar:: baz

Bar description.

will be rendered as:

. foo::
Foo description.

. bar:: baz
Bar description.

. rst:directive:option:: name
Describes an option for reST directive. The name can be a single option name or option name with arguments
which separated with colon (:). For example:

70 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

. rst:directive:: toctree
. rst:directive:option:: caption: caption of ToC

. rst:directive:option:: glob

will be rendered as:

. toctree::

:caption: caption of ToC
:glob:

options

:type: description of argument (text)
Describe the type of option value.

For example:

. rst:directive:: toctree

. rst:directive:option:: maxdepth
:type: integer or no value

New in version 2.1.

. rst:role:: name
Describes a reST role. For example:

. rst:role:: foo

Foo description.

will be rendered as:

:foo:
Foo description.

These roles are provided to refer to the described objects:

irst:dir:
:rst:role:

The Math Domain

The math domain (name math) provides the following roles:

:math:numref:
Role for cross-referencing equations defined by math directive via their label. Example:

. math:: er{i\pi} + 1 =0
:label: euler

Euler's identity, equation :math:numref: euler , was elected one of the
most beautiful mathematical formulas.

1.3. reStructuredText 71

Sphinx Documentation, Release 4.0.0+

New in version 1.8.

More domains

The sphinx-contrib!'?® repository contains more domains available as extensions; currently Ada'?’, CoffeeScript'?®,
Erlang'?®, HTTP', Lasso'?!, MATLAB'3?, PHP'*3, and Ruby'3* domains. Also available are domains for Chapel'®,
Common Lisp'*®, dqn'?’, Go'38, Jinja'?°, Operation'*’, and Scala'*!.

1.4 Markdown

Markdown'#? is a lightweight markup language with a simplistic plain text formatting syntax. It exists in many syn-
tactically different flavors. To support Markdown-based documentation, Sphinx can use recommonmark'**. recom-
monmark is a Docutils bridge to CommonMark-py'**, a Python package for parsing the CommonMark'*> Markdown
flavor.

Configuration

To configure your Sphinx project for Markdown support, proceed as follows:

1. Install the Markdown parser recommonmark:

pip install --upgrade recommonmark

Note: The configuration as explained here requires recommonmark version 0.5.0 or later.

2. Add recommonmark to the 1ist of configured extensions:

extensions = ['recommonmark']

Changed in version 1.8: Version 1.8 deprecates and version 3.0 removes the source_parsers configuration
variable that was used by older recommonmark versions.

3. If you want to use Markdown files with extensions other than .md, adjust the source_suffix variable. The
following example configures Sphinx to parse all files with the extensions .md and . txt as Markdown:

126 https://github.com/sphinx-contrib

127 https://pypi.org/project/sphinxcontrib-adadomain/

128 https://pypi.org/project/sphinxcontrib-coffee/

129 https://pypi.org/project/sphinxcontrib-erlangdomain/

130 https://pypi.org/project/sphinxcontrib-httpdomain/

131 https://pypi.org/project/sphinxcontrib-lassodomain/

132 hitps://pypi.org/project/sphinxcontrib-matlabdomain/

133 https://pypi.org/project/sphinxcontrib-phpdomain/

134 https://bitbucket.org/birkenfeld/sphinx-contrib/src/default/rubydomain
135 https://pypi.org/project/sphinxcontrib-chapeldomain/

136 https://pypi.org/project/sphinxcontrib-cldomain/

137 https://pypi.org/project/sphinxcontrib-dqndomain/

138 https://pypi.org/project/sphinxcontrib-golangdomain/

139 https://pypi.org/project/sphinxcontrib- jinjadomain/

140 https://pypi.org/project/sphinxcontrib-operationdomain/
141 https://pypi.org/project/sphinxcontrib-scaladomain/

142 https://daringfireball.net/projects/markdown/

143 https://recommonmark.readthedocs.io/en/latest/index.html
144 https://github.com/rtfd/CommonMark- py

145 https://commonmark.org/

72 Chapter 1. Using Sphinx

https://github.com/sphinx-contrib
https://pypi.org/project/sphinxcontrib-adadomain/
https://pypi.org/project/sphinxcontrib-coffee/
https://pypi.org/project/sphinxcontrib-erlangdomain/
https://pypi.org/project/sphinxcontrib-httpdomain/
https://pypi.org/project/sphinxcontrib-lassodomain/
https://pypi.org/project/sphinxcontrib-matlabdomain/
https://pypi.org/project/sphinxcontrib-phpdomain/
https://bitbucket.org/birkenfeld/sphinx-contrib/src/default/rubydomain
https://pypi.org/project/sphinxcontrib-chapeldomain/
https://pypi.org/project/sphinxcontrib-cldomain/
https://pypi.org/project/sphinxcontrib-dqndomain/
https://pypi.org/project/sphinxcontrib-golangdomain/
https://pypi.org/project/sphinxcontrib-jinjadomain/
https://pypi.org/project/sphinxcontrib-operationdomain/
https://pypi.org/project/sphinxcontrib-scaladomain/
https://daringfireball.net/projects/markdown/
https://recommonmark.readthedocs.io/en/latest/index.html
https://github.com/rtfd/CommonMark-py
https://commonmark.org/

Sphinx Documentation, Release 4.0.0+

source_suffix = {

'.rst': 'restructuredtext',
".txt': 'markdown',
".md': "markdown',

4. You can further configure recommonmark to allow custom syntax that standard CommonMark doesn’t support.
Read more in the recommonmark documentation'#°,

1.5 Configuration

The configuration directory must contain a file named conf. py. This file (containing Python code) is called the “build
configuration file” and contains (almost) all configuration needed to customize Sphinx input and output behavior.

An optional file docutils.conf'” can be added to the configuration directory to adjust Docutils'*®

uration if not otherwise overridden or set by Sphinx.

f147 config-

The configuration file is executed as Python code at build time (using execfile (), and with the current directory set
to its containing directory), and therefore can execute arbitrarily complex code. Sphinx then reads simple names from
the file’s namespace as its configuration.

Important points to note:
* If not otherwise documented, values must be strings, and their default is the empty string.

¢ The term “fully-qualified name” refers to a string that names an importable Python object inside a module; for
example, the FQN "sphinx.builders.Builder" means the Builder class in the sphinx.builders module.

* Remember that document names use / as the path separator and don’t contain the file name extension.
* Since conf.py is read as a Python file, the usual rules apply for encodings and Unicode support.

» The contents of the config namespace are pickled (so that Sphinx can find out when configuration changes), so
it may not contain unpickleable values — delete them from the namespace with del if appropriate. Modules are
removed automatically, so you don’t need to del your imports after use.

* There is a special object named tags available in the config file. It can be used to query and change the
tags (see Including content based on tags). Use tags.has('tag') to query, tags.add('tag') and tags.
remove('tag') to change. Only tags set via the -t command-line option or via tags.add('tag') can be
queried using tags.has('tag'). Note that the current builder tag is not available in conf.py, as it is created
after the builder is initialized.

Project information
project
The documented project’s name.

author

The author name(s) of the document. The default value is 'unknown'.
copyright

A copyright statement in the style '2008, Author Name'.

146 https://recommonmark.readthedocs.io/en/latest/auto_structify.html
147 http://docutils.sourceforge.net/docs/user/config.html
148 http://docutils.sourceforge.net/

1.5. Configuration 73

https://recommonmark.readthedocs.io/en/latest/auto_structify.html
http://docutils.sourceforge.net/docs/user/config.html
http://docutils.sourceforge.net/

Sphinx Documentation, Release 4.0.0+

project_copyright
An alias of copyright.

New in version 3.5.

version
The major project version, used as the replacement for | version|. For example, for the Python documentation,
this may be something like 2. 6.

release
The full project version, used as the replacement for |release| and e.g. in the HTML templates. For example,
for the Python documentation, this may be something like 2.6.0rc1.

If you don’t need the separation provided between version and release, just set them both to the same value.

General configuration

extensions
A list of strings that are module names of extensions. These can be extensions coming with Sphinx (named
sphinx.ext.*) or custom ones.

Note that you can extend sys.path!'* within the conf file if your extensions live in another directory — but
make sure you use absolute paths. If your extension path is relative to the configuration directory, use os.path.
abspath() Y like so:

import sys, os
sys.path.append(os.path.abspath('sphinxext'))

extensions = ['extname']

That way, you can load an extension called extname from the subdirectory sphinxext.
The configuration file itself can be an extension; for that, you only need to provide a setup () function in it.

source_suffix
The file extensions of source files. Sphinx considers the files with this suffix as sources. The value can be a
dictionary mapping file extensions to file types. For example:

source_suffix = {

'.rst': 'restructuredtext',
'.txt': 'restructuredtext',
'.md': 'markdown',

By default, Sphinx only supports 'restructuredtext' file type. You can add a new file type using source
parser extensions. Please read a document of the extension to know which file type the extension supports.

The value may also be a list of file extensions: then Sphinx will consider that they all map to the
'restructuredtext’ file type.

Defaultis {'.rst': 'restructuredtext'}.

Note: file extensions have to start with a dot (e.g. .rst).

Changed in version 1.3: Can now be a list of extensions.

149 https://docs.python.org/3/library/sys.html#sys.path
150 https://docs.python.org/3/library/os.path.html#os.path.abspath

74 Chapter 1. Using Sphinx

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/os.path.html#os.path.abspath
https://docs.python.org/3/library/os.path.html#os.path.abspath

Sphinx Documentation, Release 4.0.0+

Changed in version 1.8: Support file type mapping

source_encoding
The encoding of all reST source files. The recommended encoding, and the default value, is 'utf-8-sig".

New in version 0.5: Previously, Sphinx accepted only UTF-8 encoded sources.

source_parsers
If given, a dictionary of parser classes for different source suffices. The keys are the suffix, the values can be
either a class or a string giving a fully-qualified name of a parser class. The parser class can be either docutils.
parsers.Parser or sphinx.parsers.Parser. Files with a suffix that is not in the dictionary will be parsed
with the default reStructuredText parser.

For example:

source_parsers = {'.md': 'recommonmark.parser.CommonMarkParser'}

Note: Refer to Markdown for more information on using Markdown with Sphinx.

New in version 1.3.

Deprecated since version 1.8: Now Sphinx provides an API Sphinx.add_source_parser() to register a
source parser. Please use it instead.

master_doc
The document name of the “master” document, that is, the document that contains the root toctree directive.
Default is 'index'.

Changed in version 2.0: The default is changed to 'index' from 'contents"'.

exclude_patterns
A list of glob-style patterns that should be excluded when looking for source files.! They are matched against
the source file names relative to the source directory, using slashes as directory separators on all platforms.

Example patterns:
e 'library/xml.rst' —ignores the library/xml.rst file (replaces entry in unused_docs)
e 'library/xml' —ignores the library/xml directory

e 'library/xml*"' —ignores all files and directories starting with 1ibrary/xml

o 'k

/.svn' —ignores all .svn directories

exclude_patterns 1is also consulted when looking for static files in html_static_path and
html_extra_path.

New in version 1.0.

templates_path
A list of paths that contain extra templates (or templates that overwrite builtin/theme-specific templates). Relative
paths are taken as relative to the configuration directory.

Changed in version 1.3: As these files are not meant to be built, they are automatically added to
exclude_patterns.

template_bridge
A string with the fully-qualified name of a callable (or simply a class) that returns an instance of
TemplateBridge. This instance is then used to render HTML documents, and possibly the output of other
builders (currently the changes builder). (Note that the template bridge must be made theme-aware if HTML
themes are to be used.)

' A note on available globbing syntax: you can use the standard shell constructs *, ?, [...] and [!...] with the feature that these all don’t
match slashes. A double star ** can be used to match any sequence of characters including slashes.

1.5. Configuration 75

Sphinx Documentation, Release 4.0.0+

rst_epilog
A string of reStructuredText that will be included at the end of every source file that is read. This is a possible
place to add substitutions that should be available in every file (another being rst_prolog). An example:

rst_epilog =
|psf| replace:: Python Software Foundation

New in version 0.6.

rst_prolog
A string of reStructuredText that will be included at the beginning of every source file that is read. This is
a possible place to add substitutions that should be available in every file (another being rst_epilog). An
example:

rst_prolog =
|psf| replace:: Python Software Foundation

New in version 1.0.

primary_domain
The name of the default domain. Can also be None to disable a default domain. The defaultis 'py'. Those objects
in other domains (whether the domain name is given explicitly, or selected by a default-domain directive) will
have the domain name explicitly prepended when named (e.g., when the default domain is C, Python functions
will be named “Python function”, not just “function”).

New in version 1.0.

default_role
The name of a reST role (builtin or Sphinx extension) to use as the default role, that is, for text marked up ~like
this™. This can be setto 'py:obj' to make “filter" a cross-reference to the Python function “filter”. The
default is None, which doesn’t reassign the default role.

The default role can always be set within individual documents using the standard reST default-role directive.
New in version 0.4.

keep_warnings
If true, keep warnings as “system message” paragraphs in the built documents. Regardless of this setting, warn-
ings are always written to the standard error stream when sphinx-build is run.

The default is False, the pre-0.5 behavior was to always keep them.
New in version 0.5.

suppress_warnings
A list of warning types to suppress arbitrary warning messages.

Sphinx supports following warning types:

¢ app.add_node

e app.add_directive

e app.add_role

e app.add_generic_role

e app.add_source_parser

* download.not_readable

* image.not_readable

e ref.term

76 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

e ref.ref

e ref.numref

e ref.keyword

e ref.option

e ref.citation

e ref.footnote

* ref.doc

e ref.python

e misc.highlighting_failure

* toc.circular

* toc.secnum

¢ epub.unknown_project_files

e epub.duplicated_toc_entry

* autosectionlabel.*
You can choose from these types.
Now, this option should be considered experimental.
New in version 1.4.
Changed in version 1.5: Added misc.highlighting_failure
Changed in version 1.5.1: Added epub.unknown_project_files
Changed in version 1.6: Added ref. footnote
Changed in version 2.1: Added autosectionlabel.*
Changed in version 3.3.0: Added epub.duplicated_toc_entry

needs_sphinx
If set to amajor.minor version string like '1.1", Sphinx will compare it with its version and refuse to build if
it is too old. Default is no requirement.

New in version 1.0.
Changed in version 1.4: also accepts micro version string

needs_extensions
This value can be a dictionary specifying version requirements for extensions in extensions, e.g.

needs_extensions = {'sphinxcontrib.something': '1.5'}. The version strings should be in the
form major.minor. Requirements do not have to be specified for all extensions, only for those you want to
check.

This requires that the extension specifies its version to Sphinx (see Developing extensions for Sphinx for how to
do that).

New in version 1.3.

manpages_url
A URL to cross-reference manpage directives. If this is defined to https://manpages.debian.org/{path},
the :manpage: ‘man(1) " role will link to <https://manpages.debian.org/man(1)>. The patterns available are:

* page - the manual page (man)
e section - the manual section (1)

* path - the original manual page and section specified (man(1))

1.5. Configuration 77

https://manpages.debian.org/man(1)

Sphinx Documentation, Release 4.0.0+

This also supports manpages specified as man. 1.

Note: This currently affects only HTML writers but could be expanded in the future.

New in version 1.7.

nitpicky
If true, Sphinx will warn about all references where the target cannot be found. Default is False. You can
activate this mode temporarily using the -n command-line switch.

New in version 1.0.

nitpick_ignore
A list of (type, target) tuples (by default empty) that should be ignored when generating warnings in
“nitpicky mode”. Note that type should include the domain name if present. Example entries would be
('py:func', 'int') or ('envvar', 'LD_LIBRARY_PATH').

New in version 1.1.

numfig
If true, figures, tables and code-blocks are automatically numbered if they have a caption. The numref role is
enabled. Obeyed so far only by HTML and LaTeX builders. Default is False.

Note: The LaTeX builder always assigns numbers whether this option is enabled or not.

New in version 1.3.

numfig_format
A dictionary mapping 'figure', 'table', 'code-block' and 'section' to strings that are used for format
of figure numbers. As a special character, %s will be replaced to figure number.

Defaultistouse 'Fig. %s' for 'figure', 'Table %s' for 'table', 'Listing %s' for 'code-block' and
'Section' for 'section’.

New in version 1.3.
numfig_secnum_depth
« if set to O, figures, tables and code-blocks are continuously numbered starting at 1.

¢ if 1 (default) numbers will be x.1, x.2, ... with x the section number (top level sectioning; no x. if no
section). This naturally applies only if section numbering has been activated via the :numbered: option
of the toctree directive.

¢ 2 means that numbers willbe x.y. 1, x.y.2, ... iflocated in a sub-section (but still x. 1, x. 2, ... if located
directly under a section and 1, 2, ... if not in any top level section.)

* efc...
New in version 1.3.
Changed in version 1.7: The LaTeX builder obeys this setting (if numfig is set to True).

smartquotes
If true, the Docutils Smart Quotes transform'>!, originally based on SmartyPants'>? (limited to English) and
currently applying to many languages, will be used to convert quotes and dashes to typographically correct
entities. Default: True.

New in version 1.6.6: It replaces deprecated html_use_smartypants. It applies by default to all builders except
man and text (see smartquotes_excludes.)

78 Chapter 1. Using Sphinx

http://docutils.sourceforge.net/docs/user/smartquotes.html
https://daringfireball.net/projects/smartypants/

Sphinx Documentation, Release 4.0.0+

A docutils.conf'? file located in the configuration directory (or a global ~/.docutils file) is obeyed uncon-

ditionally if it deactivates smart quotes via the corresponding Docutils option'>*. But if it activates them, then
smartquotes does prevail.

smartquotes_action

This string customizes the Smart Quotes transform. See the file smartquotes.py at the Docutils repository '
for details. The default 'gDe' educates normal quote characters ", ', em- and en-Dashes ---, --, and ellipses

New in version 1.6.6.

smartquotes_excludes

This is a dict whose default is:

{'languages': ['ja'], 'builders': ['man', 'text']}

Each entry gives a sufficient condition to ignore the smartquotes setting and deactivate the Smart Quotes
transform. Accepted keys are as above 'builders' or 'languages’'. The values are lists.

Note: Currently, in case of invocation of make with multiple targets, the first target name is the only one which
is tested against the 'builders’' entry and it decides for all. Also, a make text following make html needs
to be issued in the form make text 0="-E" to force re-parsing of source files, as the cached ones are already
transformed. On the other hand the issue does not arise with direct usage of sphinx-build as it caches (in its
default usage) the parsed source files in per builder locations.

Hint: An alternative way to effectively deactivate (or customize) the smart quotes for a given builder, for
example latex, is to use make this way:

make latex 0="-D smartquotes_action="

This can follow some make html with no problem, in contrast to the situation from the prior note. It requires
Docutils 0.14 or later.

New in version 1.6.6.

user_agent

A User-Agent of Sphinx. It is used for a header on HTTP access (ex. linkcheck, intersphinx and so on). Default
is "Sphinx/X.Y.Z requests/X.Y.Z python/X.Y.Z".

New in version 2.3.

tls_verify

If true, Sphinx verifies server certifications. Default is True.

New in version 1.5.

tls_cacerts

A path to a certification file of CA or a path to directory which contains the certificates. This also allows a
dictionary mapping hostname to the path to certificate file. The certificates are used to verify server certifications.

New in version 1.5.

151

http://docutils.sourceforge.net/docs/user/smartquotes.html

152 https://daringfireball.net/projects/smartypants/

153 http://docutils.sourceforge.net/docs/user/config html

154 http://docutils.sourceforge.net/docs/user/config. html#smart-quotes
155 https://sourceforge.net/p/docutils/code/HEAD/tree/trunk/docutils/

1.5. Configuration 79

http://docutils.sourceforge.net/docs/user/config.html
http://docutils.sourceforge.net/docs/user/config.html#smart-quotes
https://sourceforge.net/p/docutils/code/HEAD/tree/trunk/docutils/

Sphinx Documentation, Release 4.0.0+

Tip: Sphinx uses requests'>® as a HTTP library internally. Therefore, Sphinx refers a certification file on the

directory pointed REQUESTS_CA_BUNDLE environment variable if t1s_cacerts not set.

today
today_fmt
These values determine how to format the current date, used as the replacement for |today|.

* If you set today to a non-empty value, it is used.
« Otherwise, the current time is formatted using time.strftime () 'S and the format given in today_fmt.

The default is now today and a today_fmt of '%b %d, %Y' (or, if translation is enabled with language, an
equivalent format for the selected locale).

highlight_language
The default language to highlight source code in. The default is 'python3'. The value should be a valid
Pygments lexer name, see Showing code examples for more details.

New in version 0.5.

Changed in version 1.4: The default is now 'default'. It is similar to 'python3"'; it is mostly a superset
of "python' but it fallbacks to 'none' without warning if failed. 'python3' and other languages will emit
warning if failed. If you prefer Python 2 only highlighting, you can set it back to 'python’.

highlight_options
A dictionary that maps language names to options for the lexer modules of Pygments. These are lexer-specific;
for the options understood by each, see the Pygments documentation'%.

Example:

highlight_options = {
'default': {'stripall': True},
'php': {'startinline': True},

}

A single dictionary of options are also allowed. Then it is recognized as options to the lexer specified by
highlight_language:

configuration for the ““highlight_language™
highlight_options = {'stripall': True}

New in version 1.3.
Changed in version 3.5: Allow to configure highlight options for multiple languages

pygments_style
The style name to use for Pygments highlighting of source code. If not set, either the theme’s default style or
'sphinx' is selected for HTML output.

Changed in version 0.3: If the value is a fully-qualified name of a custom Pygments style class, this is then used
as custom style.

add_function_parentheses
A boolean that decides whether parentheses are appended to function and method role text (e.g. the content of
:func: “input’) to signify that the name is callable. Default is True.

156 https://requests.readthedocs.io/en/master/
157 https://docs.python.org/3/library/time html#time.strftime
158 https://pygments.org/docs/lexers

80 Chapter 1. Using Sphinx

https://requests.readthedocs.io/en/master/
https://docs.python.org/3/library/time.html#time.strftime
https://pygments.org/docs/lexers

Sphinx Documentation, Release 4.0.0+

add_module_names
A boolean that decides whether module names are prepended to all object names (for object types where a
“module” of some kind is defined), e.g. for py: function directives. Default is True.

show_authors
A boolean that decides whether codeauthor and sectionauthor directives produce any output in the built
files.

modindex_common_prefix
A list of prefixes that are ignored for sorting the Python module index (e.g., if this is set to ['foo. '], then
foo.bar is shown under B, not F). This can be handy if you document a project that consists of a single package.
Works only for the HTML builder currently. Default is [].

New in version 0.6.

trim_footnote_reference_space
Trim spaces before footnote references that are necessary for the reST parser to recognize the footnote, but do
not look too nice in the output.

New in version 0.6.

trim_doctest_flags
If true, doctest flags (comments looking like # doctest: FLAG, ...)atthe ends of lines and <BLANKLINE>
markers are removed for all code blocks showing interactive Python sessions (i.e. doctests). Default is True.
See the extension doctest for more possibilities of including doctests.

New in version 1.0.
Changed in version 1.1: Now also removes <BLANKLINE>.

strip_signature_backslash
Default is False. When backslash stripping is enabled then every occurrence of \\ in a domain directive will
be changed to \, even within string literals. This was the behaviour before version 3.0, and setting this variable
to True will reinstate that behaviour.

New in version 3.0.

Options for internationalization

These options influence Sphinx’s Native Language Support. See the documentation on Internationalization for details.

language
The code for the language the docs are written in. Any text automatically generated by Sphinx will be
in that language. Also, Sphinx will try to substitute individual paragraphs from your documents with
the translation sets obtained from locale_dirs. Sphinx will search language-specific figures named by
figure_language_filename (e.g. the German version of myfigure.png will be myfigure.de.png by de-
fault setting) and substitute them for original figures. In the LaTeX builder, a suitable language will be selected
as an option for the Babel package. Default is None, which means that no translation will be done.

New in version 0.5.
Changed in version 1.4: Support figure substitution
Currently supported languages by Sphinx are:

e ar — Arabic

* bg — Bulgarian

* bn — Bengali

¢ ca — Catalan

1.5. Configuration 81

Sphinx Documentation, Release 4.0.0+

cak — Kaqchikel

cs — Czech
cy — Welsh
da — Danish

de — German
el — Greek

en — English
eo — Esperanto
es — Spanish

et — Estonian

eu — Basque
fa — Iranian

fi — Finnish
fr — French

he — Hebrew
hi - Hindi

hi_IN - Hindi (India)
hr — Croatian

hu — Hungarian

id — Indonesian

it — Italian

ja — Japanese

ko — Korean

1t — Lithuanian

lv — Latvian

mk — Macedonian

nb_NO — Norwegian Bokmal

ne — Nepali
nl — Dutch
pl — Polish

pt — Portuguese

pt_BR — Brazilian Portuguese
pt_PT — European Portuguese
ro — Romanian

ru — Russian

si — Sinhala

sk — Slovak

sl — Slovenian

82

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

¢ sq — Albanian

* sr — Serbian

e sr@latin — Serbian (Latin)
e sr_RS — Serbian (Cyrillic)

* sv — Swedish

e ta— Tamil

* te —Telugu

e tr — Turkish

e uk_UA — Ukrainian

e ur — Urdu

e vi — Vietnamese

e zh_CN - Simplified Chinese
e zh_TW — Traditional Chinese

locale_dirs
New in version 0.5.

Directories in which to search for additional message catalogs (see 1anguage), relative to the source directory.
The directories on this path are searched by the standard gettext'>’ module.

Internal messages are fetched from a text domain of sphinx; so if you add the directory ./locale to this
setting, the message catalogs (compiled from .po format using msgfmt) must be in ./locale/language/
LC_MESSAGES/sphinx.mo. The text domain of individual documents depends on gettext_compact.

The defaultis ['locales'].
Changed in version 1.5: Use locales directory as a default value

gettext_compact
New in version 1.1.

If true, a document’s text domain is its docname if it is a top-level project file and its very base directory otherwise.
If set to string, all document’s text domain is this string, making all documents use single text domain.

By default, the document markup/code.rst ends up in the markup text domain. With this option set to False,
it is markup/code.

Changed in version 3.3: The string value is now accepted.

gettext_uuid
If true, Sphinx generates uuid information for version tracking in message catalogs. It is used for:

¢ Add uid line for each msgids in .pot files.

* Calculate similarity between new msgids and previously saved old msgids. This calculation takes a long
time.

If you want to accelerate the calculation, you can use python-levenshtein 3rd-party package written in C by
using pip install python-levenshtein.

The default is False.

New in version 1.3.

159 https://docs.python.org/3/library/gettext html#module- gettext

1.5. Configuration 83

https://docs.python.org/3/library/gettext.html#module-gettext

Sphinx Documentation, Release 4.0.0+

gettext_location
If true, Sphinx generates location information for messages in message catalogs.

The default is True.
New in version 1.3.

gettext_auto_build
If true, Sphinx builds mo file for each translation catalog files.

The default is True.
New in version 1.3.

gettext_additional_targets
To specify names to enable gettext extracting and translation applying for i18n additionally. You can specify
below names:

Index index terms
Literal-block literal blocks (: : annotation and code-block directive)
Doctest-block doctest block
Raw raw content
Image image/figure uri
For example: gettext_additional_targets = ['literal-block', 'image'].
The default is [].
New in version 1.3.
Changed in version 4.0: The alt text for image is translated by default.

figure_language_filename
The filename format for language-specific figures. The default value is {root}.{language}{ext}. It will
be expanded to dirname/filename.en.png from .. image:: dirname/filename.png. The available
format tokens are:

e {root} - the filename, including any path component, without the file extension, e.g. dirname/filename
e {path} - the directory path component of the filename, with a trailing slash if non-empty, e.g. dirname/
* {docpath} - the directory path component for the current document, with a trailing slash if non-empty.

* {basename} - the filename without the directory path or file extension components, e.g. £ilename

* {ext} - the file extension, e.g. .png

* {language} - the translation language, e.g. en

For example, setting this to {path}{language}/{basename}{ext} will expand to dirname/en/filename.
png instead.

New in version 1.4.
Changed in version 1.5: Added {path} and {basename} tokens.
Changed in version 3.2: Added {docpath} token.

84 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Options for Math

These options influence Math notations.

math_number_all
Set this option to True if you want all displayed math to be numbered. The default is False.

math_eqref_format
A string used for formatting the labels of references to equations. The {number} place-holder stands for the
equation number.

Example: 'Eq.{number}' gets rendered as, for example, Eq. 10.

math_numfig
If True, displayed math equations are numbered across pages when numfig is enabled. The
numfig_secnum_depth setting is respected. The eq, not numref, role must be used to reference equation
numbers. Default is True.

New in version 1.7.

Options for HTML output

These options influence HTML as well as HTML Help output, and other builders that use Sphinx’s HTMLWriter class.

html_theme
The “theme” that the HTML output should use. See the section about theming. The default is 'alabaster"'.

New in version 0.6.

html_theme_options
A dictionary of options that influence the look and feel of the selected theme. These are theme-specific. For the
options understood by the builtin themes, see this section.

New in version 0.6.

html_theme_path
A list of paths that contain custom themes, either as subdirectories or as zip files. Relative paths are taken as
relative to the configuration directory.

New in version 0.6.

html_style
The style sheet to use for HTML pages. A file of that name must exist either in Sphinx’s static/ path, or in
one of the custom paths given in html_static_path. Default is the stylesheet given by the selected theme. If
you only want to add or override a few things compared to the theme’s stylesheet, use CSS @import to import
the theme’s stylesheet.

html_title
The “title” for HTML documentation generated with Sphinx’s own templates. This is appended to the <title>
tag of individual pages, and used in the navigation bar as the “topmost” element. It defaults to '<project>
v<revision> documentation'.

html_short_title
A shorter “title” for the HTML docs. This is used for links in the header and in the HTML Help docs. If not
given, it defaults to the value of html_title.

New in version 0.4.

html_baseurl
The base URL which points to the root of the HTML documentation. It is used to indicate the location of
document using The Canonical Link Relation'®’, Default: ""'.

1.5. Configuration 85

https://tools.ietf.org/html/rfc6596

Sphinx Documentation, Release 4.0.0+

New in version 1.8.

html_codeblock_linenos_style
The style of line numbers for code-blocks.

* "table' —display line numbers using <table> tag

e 'inline"' — display line numbers using tag (default)
New in version 3.2.
Changed in version 4.0: It defaults to "inline"'.
Deprecated since version 4.0.

html_context
A dictionary of values to pass into the template engine’s context for all pages. Single values can also be put in
this dictionary using the -A command-line option of sphinx-build.

New in version 0.5.

html_logo
If given, this must be the name of an image file (path relative to the configuration directory) that is the logo of
the docs, or URL that points an image file for the logo. It is placed at the top of the sidebar; its width should
therefore not exceed 200 pixels. Default: None.

New in version 0.4.1: The image file will be copied to the _static directory of the output HTML, but only if
the file does not already exist there.

Changed in version 4.0: Also accepts the URL for the logo file.

html_favicon
If given, this must be the name of an image file (path relative to the configuration directory) that is the favicon of
the docs, or URL that points an image file for the favicon. Modern browsers use this as the icon for tabs, windows
and bookmarks. It should be a Windows-style icon file (.1ico), which is 16x16 or 32x32 pixels large. Default:
None.

New in version 0.4: The image file will be copied to the _static directory of the output HTML, but only if the
file does not already exist there.

Changed in version 4.0: Also accepts the URL for the favicon.

html_css_files
A list of CSS files. The entry must be a filename string or a tuple containing the filename string and the attributes
dictionary. The filename must be relative to the html_static_path, or a full URI with scheme like http://
example.org/style.css. The attributes is used for attributes of <link> tag. It defaults to an empty list.

Example:

html_css_files = ['custom.css',
'https://example.com/css/custom.css’,
('print.css', {'media': 'print'})]

As a special attribute, priority can be set as an integer to load the CSS file earlier or lazier step. For more
information, refer Sphinx.add_css_files().

New in version 1.8.
Changed in version 3.5: Support priority attribute

html_js_files
A list of JavaScript filename. The entry must be a filename string or a tuple containing the filename string and
the attributes dictionary. The filename must be relative to the html_static_path, or a full URI with scheme

160 https://tools.ietf.org/html/rfc6596

86 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

like http://example.org/script.js. The attributes is used for attributes of <script> tag. It defaults to
an empty list.

Example:

html_js_files = ['script.js',
'https://example.com/scripts/custom. js',
('custom.js', {'async': 'async'})]

As a special attribute, priority can be set as an integer to load the CSS file earlier or lazier step. For more
information, refer Sphinx.add_css_files().

New in version 1.8.
Changed in version 3.5: Support priority attribute

html_static_path
A list of paths that contain custom static files (such as style sheets or script files). Relative paths are taken as
relative to the configuration directory. They are copied to the output’s _static directory after the theme’s static
files, so a file named default.css will overwrite the theme’s default.css.

As these files are not meant to be built, they are automatically excluded from source files.

Note: For security reasons, dotfiles under html_static_path will not be copied. If you would like to copy
them intentionally, please add each filepath to this setting:

html_static_path = ['_static', '_static/.htaccess']

Another way to do that, you can also use html_extra_path. It allows to copy dotfiles under the directories.

Changed in version 0.4: The paths in html_static_path can now contain subdirectories.
Changed in version 1.0: The entries in html_static_path can now be single files.
Changed in version 1.8: The files under html_static_path are excluded from source files.

html_extra_path
A list of paths that contain extra files not directly related to the documentation, such as robots.txt or .
htaccess. Relative paths are taken as relative to the configuration directory. They are copied to the output
directory. They will overwrite any existing file of the same name.

As these files are not meant to be built, they are automatically excluded from source files.
New in version 1.2.

Changed in version 1.4: The dotfiles in the extra directory will be copied to the output directory. And it refers
exclude_patterns on copying extra files and directories, and ignores if path matches to patterns.

html_last_updated_fmt
If this is not None, a ‘Last updated on:* timestamp is inserted at every page bottom, using the given strftime ()
format. The empty string is equivalent to '%b %d, %Y' (or a locale-dependent equivalent).

html_use_smartypants
If true, quotes and dashes are converted to typographically correct entities. Default: True.

Deprecated since version 1.6: To disable smart quotes, use rather smartquotes.

html_add_permalinks
Sphinx will add “permalinks” for each heading and description environment as paragraph signs that become
visible when the mouse hovers over them.

This value determines the text for the permalink; it defaults to "". Set it to None or the empty string to disable
permalinks.

1.5. Configuration 87

Sphinx Documentation, Release 4.0.0+

New in version 0.6: Previously, this was always activated.

Changed in version 1.1: This can now be a string to select the actual text of the link. Previously, only boolean
values were accepted.

Deprecated since version 3.5: This has been replaced by html_permalinks

html_permalinks

If true, Sphinx will add “permalinks” for each heading and description environment. Default: True.

New in version 3.5.

html_permalinks_icon

A text for permalinks for each heading and description environment. HTML tags are allowed. Default: a para-
graph sign;

New in version 3.5.

html_sidebars

Custom sidebar templates, must be a dictionary that maps document names to template names.

The keys can contain glob-style patterns”™ 7> in which case all matching documents will get the specified
sidebars. (A warning is emitted when a more than one glob-style pattern matches for any document.)
The values can be either lists or single strings.

» If a value is a list, it specifies the complete list of sidebar templates to include. If all or some of the default
sidebars are to be included, they must be put into this list as well.

The default sidebars (for documents that don’t match any pattern) are defined by theme itself. Builtin themes
are using these templates by default: ['localtoc.html', 'relations.html', 'sourcelink.
html', 'searchbox.html'].

 If a value is a single string, it specifies a custom sidebar to be added between the 'sourcelink.html'
and 'searchbox.html' entries. This is for compatibility with Sphinx versions before 1.0.

Deprecated since version 1.7: a single string value for html_sidebars will be removed in 2.0
Builtin sidebar templates that can be rendered are:
* localtoc.html — a fine-grained table of contents of the current document
¢ globaltoc.html — a coarse-grained table of contents for the whole documentation set, collapsed
¢ relations.html — two links to the previous and next documents
¢ sourcelink.html — a link to the source of the current document, if enabled in html_show_sourcelink
» searchbox.html — the “quick search” box

Example:

html_sidebars = {
'#%!': ['globaltoc.html', 'sourcelink.html', 'searchbox.html'],
'using/windows': ['windowssidebar.html', 'searchbox.html'],

}

This will render the custom template windowssidebar.html and the quick search box within the sidebar of the
given document, and render the default sidebars for all other pages (except that the local TOC is replaced by the
global TOC).

New in version 1.0: The ability to use globbing keys and to specify multiple sidebars.

Note that this value only has no effect if the chosen theme does not possess a sidebar, like the builtin scrolls and
haiku themes.

88

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

html_additional_pages
Additional templates that should be rendered to HTML pages, must be a dictionary that maps document names
to template names.

Example:

html_additional_pages = {
'download': 'customdownload.html',

3

This will render the template customdownload.html as the page download.html.

html_domain_indices
If true, generate domain-specific indices in addition to the general index. For e.g. the Python domain, this is the
global module index. Default is True.

This value can be a bool or a list of index names that should be generated. To find out the index name for a specific
index, look at the HTML file name. For example, the Python module index has the name 'py-modindex’.

New in version 1.0.

html_use_index
If true, add an index to the HTML documents. Default is True.

New in version 0.4.

html_split_index
If true, the index is generated twice: once as a single page with all the entries, and once as one page per starting
letter. Default is False.

New in version 0.4.

html_copy_source
If true, the reST sources are included in the HTML build as _sources/name. The default is True.

html_show_sourcelink
If true (and html_copy_source is true as well), links to the reST sources will be added to the sidebar. The
default is True.

New in version 0.6.

html_sourcelink_suffix
Suffix to be appended to source links (see html_show_sourcelink), unless they have this suffix already. De-
faultis '.txt'.

New in version 1.5.

html_use_opensearch
If nonempty, an OpenSearch'®! description file will be output, and all pages will contain a <1ink> tag referring to
it. Since OpenSearch doesn’t support relative URLs for its search page location, the value of this option must be
the base URL from which these documents are served (without trailing slash), e.g. "https://docs.python.
org". The defaultis '"'.

html_file_suffix
This is the file name suffix for generated HTML files. The default is ".html".

New in version 0.4.

html_link_ suffix
Suffix for generated links to HTML files. The default is whatever html_file_suffix is set to; it can be set
differently (e.g. to support different web server setups).

New in version 0.6.

161 http://www.opensearch.org/Home

1.5. Configuration 89

http://www.opensearch.org/Home

Sphinx Documentation, Release 4.0.0+

html_show_copyright
If true, “(C) Copyright ...” is shown in the HTML footer. Default is True.

New in version 1.0.

html_show_sphinx
If true, “Created using Sphinx” is shown in the HTML footer. Default is True.

New in version 0.4.

html_output_encoding
Encoding of HTML output files. Default is 'utf-8". Note that this encoding name must both be a valid Python
encoding name and a valid HTML charset value.

New in version 1.0.

html_compact_lists
If true, a list all whose items consist of a single paragraph and/or a sub-list all whose items etc... (recursive
definition) will not use the <p> element for any of its items. This is standard docutils behavior. Default: True.

New in version 1.0.

html_secnumber_suffix
Suffix for section numbers. Default: ". ". Setto " " to suppress the final dot on section numbers.

New in version 1.0.

html_search_language
Language to be used for generating the HTML full-text search index. This defaults to the global language selected
with Ianguage. If there is no support for this language, "en" is used which selects the English language.

Support is present for these languages:
¢ da — Danish
e nl — Dutch
* en — English
e fi — Finnish
e fr — French
* de — German
* hu — Hungarian
e it —Italian
* ja—Japanese
* no — Norwegian
* pt — Portuguese
* ro — Romanian
e ru— Russian
* es — Spanish
¢ sv — Swedish
e tr — Turkish

¢ zh — Chinese

Accelerating build speed

90 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Each language (except Japanese) provides its own stemming algorithm. Sphinx uses a Python implementation
by default. You can use a C implementation to accelerate building the index file.

162

e PorterStemmer'°~ (en)

* PyStemmer'® (all languages)

New in version 1.1: With support for en and ja.
Changed in version 1.3: Added additional languages.

html_search_options
A dictionary with options for the search language support, empty by default. The meaning of these options
depends on the language selected.

The English support has no options.
The Japanese support has these options:

Type type is dotted module path string to specify Splitter implementation which should be derived
from sphinx.search.ja.BaseSplitter. If not specified or None is specified, 'sphinx.
search. ja.DefaultSplitter' will be used.

You can choose from these modules:
‘sphinx.search.ja.DefaultSplitter’ TinySegmenter algorithm. This is default splitter.

‘sphinx.search.ja.MecabSplitter’ MeCab binding. To use this splitter, ‘mecab’
python binding or dynamic link library (‘libmecab.so’ for linux, ‘libmecab.dll’ for
windows) is required.

‘sphinx.search.ja.JanomeSplitter’ Janome binding. To use this splitter, Janome'®* is
required.

Deprecated since version 1.6: 'mecab’, ' janome' and 'default’' is deprecated. To keep com-
patibility, 'mecab’, ' janome' and 'default' are also acceptable.

Other option values depend on splitter value which you choose.

Options for "mecab’:
dic_enc dic_enc option is the encoding for the MeCab algorithm.
dict dict option is the dictionary to use for the MeCab algorithm.

lib 1ib option is the library name for finding the MeCab library via ctypes if the Python binding
is not installed.

For example:

html_search_options = {
"type': 'mecab’',
'dic_enc': 'utf-8',
'dict': '/path/to/mecab.dic',
'lib': '/path/to/libmecab.so"',

}

Options for ' janome':
user_dic user_dic option is the user dictionary file path for Janome.

user_dic_enc user_dic_enc option is the encoding for the user dictionary file specified by
user_dic option. Default is ‘utf8’.

162 hitps://pypi.org/project/PorterStemmer/
163 https://pypi.org/project/PyStemmer/

1.5. Configuration 91

https://pypi.org/project/PorterStemmer/
https://pypi.org/project/PyStemmer/
https://pypi.org/project/Janome/

Sphinx Documentation, Release 4.0.0+

New in version 1.1.

Changed in version 1.4: html_search_options for Japanese is re-organized and any custom splitter can be used
by type settings.

The Chinese support has these options:
e dict - the jieba dictionary path if want to use custom dictionary.

html_search_scorer
The name of a JavaScript file (relative to the configuration directory) that implements a search results scorer. If
empty, the default will be used.

New in version 1.2.

html_scaled_image_link
If true, images itself links to the original image if it doesn’t have ‘target’ option or scale related options: ‘scale’,
‘width’, ‘height’. The default is True.

Document authors can this feature manually with giving no-scaled-1ink class to the image:

. image:: sphinx.png
:scale: 50%
:class: no-scaled-link

New in version 1.3.
Changed in version 3.0: It is disabled for images having no-scaled-1ink class

html_math_renderer
The name of math_renderer extension for HTML output. The default is 'mathjax’.

New in version 1.8.

html_experimental_html5_writer
Output is processed with HTMLS writer. Default is False.

New in version 1.6.
Deprecated since version 2.0.

html4_writer
Output is processed with HTML4 writer. Default is False.

Options for Single HTML output

singlehtml_sidebars
Custom sidebar templates, must be a dictionary that maps document names to template names. And it only allows
a key named ‘index’. All other keys are ignored. For more information, refer to html_sidebars. By default, it
is same as html_sidebars.

164 https://pypi.org/project/Tanome/

92 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

Options for HTML help output

htmlhelp_basename
Output file base name for HTML help builder. Default is 'pydoc".

htmlhelp_file_suffix
This is the file name suffix for generated HTML help files. The default is ".html".

New in version 2.0.

htmlhelp_link_suffix
Suffix for generated links to HTML files. The default is " .html".

New in version 2.0.

Options for Apple Help output

New in version 1.3.

These options influence the Apple Help output. This builder derives from the HTML builder, so the HTML options
also apply where appropriate.

Note: Apple Help output will only work on Mac OS X 10.6 and higher, as it requires the hiutil and codesign
command line tools, neither of which are Open Source.

You can disable the use of these tools using applehelp_disable_external_tools, but the result will not be a valid
help book until the indexer is run over the .1proj folders within the bundle.

applehelp_bundle_name
The basename for the Apple Help Book. Defaults to the project name.

applehelp_bundle_id
The bundle ID for the help book bundle.

Warning: You must set this value in order to generate Apple Help.

applehelp_dev_region
The development region. Defaults to 'en-us', which is Apple’s recommended setting.

applehelp_bundle_version
The bundle version (as a string). Defaults to "1".

applehelp_icon
The help bundle icon file, or None for no icon. According to Apple’s documentation, this should be a 16-by-16
pixel version of the application’s icon with a transparent background, saved as a PNG file.

applehelp_kb_product
The product tag for use with applehelp_kb_url. Defaults to '<project>-<release>".

applehelp_kb_url
The URL for your knowledgebase server, e.g. https://example.com/kbsearch.py?
p="product'&g="query'&l="lang'. Help Viewer will replace the values 'product', 'query' and
'lang' at runtime with the contents of applehelp_kb_product, the text entered by the user in the search box
and the user’s system language respectively.

Defaults to None for no remote search.

1.5. Configuration 93

Sphinx Documentation, Release 4.0.0+

applehelp_remote_url
The URL for remote content. You can place a copy of your Help Book’s Resources folder at this location and
Help Viewer will attempt to use it to fetch updated content.

e.g. if you set it to https://example. com/help/Foo/ and Help Viewer wants a copy of index.html for an
English speaking customer, it will look at https://example.com/help/Foo/en.lproj/index.html.

Defaults to None for no remote content.

applehelp_index_anchors
If True, tell the help indexer to index anchors in the generated HTML. This can be useful for jumping to a
particular topic using the AHLookupAnchor function or the openHelpAnchor: inBook: method in your code.
It also allows you to use help:anchor URLs; see the Apple documentation for more information on this topic.

applehelp_min_term_length
Controls the minimum term length for the help indexer. Defaults to None, which means the default will be used.

applehelp_stopwords
Either a language specification (to use the built-in stopwords), or the path to a stopwords plist, or None if you
do not want to use stopwords. The default stopwords plist can be found at /usr/share/hiutil/Stopwords.
plist and contains, at time of writing, stopwords for the following languages:

Language | Code
English en
German de
Spanish es
French fr
Swedish Y
Hungarian | hu
Italian it

Defaults to 1anguage, or if that is not set, to en.

applehelp_locale
Specifies the locale to generate help for. This is used to determine the name of the . 1proj folder inside the Help
Book’s Resources, and is passed to the help indexer.

Defaults to 1anguage, or if that is not set, to en.

applehelp_title
Specifies the help book title. Defaults to ' <project> Help'.

applehelp_codesign_identity
Specifies the identity to use for code signing, or None if code signing is not to be performed.

Defaults to the value of the environment variable CODE_SIGN_IDENTITY, which is set by Xcode for script build
phases, or None if that variable is not set.

applehelp_codesign_flags
A list of additional arguments to pass to codesign when signing the help book.

Defaults to a list based on the value of the environment variable OTHER_CODE_SIGN_FLAGS, which is set by
Xcode for script build phases, or the empty list if that variable is not set.

applehelp_indexer_path
The path to the hiutil program. Defaults to ' /usr/bin/hiutil’.

applehelp_codesign_path
The path to the codesign program. Defaults to ' /usr/bin/codesign’.

applehelp_disable_external_tools
If True, the builder will not run the indexer or the code signing tool, no matter what other settings are specified.

94 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

This is mainly useful for testing, or where you want to run the Sphinx build on a non-Mac OS X platform and
then complete the final steps on OS X for some reason.

Defaults to False.

Options for epub output

These options influence the epub output. As this builder derives from the HTML builder, the HTML options also apply
where appropriate. The actual values for some of the options is not really important, they just have to be entered into
the Dublin Core metadata'®,

epub_basename
The basename for the epub file. It defaults to the project name.

epub_theme
The HTML theme for the epub output. Since the default themes are not optimized for small screen space, using
the same theme for HTML and epub output is usually not wise. This defaults to 'epub', a theme designed to
save visual space.

epub_theme_options
A dictionary of options that influence the look and feel of the selected theme. These are theme-specific. For the
options understood by the builtin themes, see this section.

New in version 1.2.

epub_title
The title of the document. It defaults to the html_title option but can be set independently for epub creation.
It defaults to the project option.

Changed in version 2.0: It defaults to the project option.

epub_description
The description of the document. The default value is 'unknown'.

New in version 1.4.
Changed in version 1.5: Renamed from epub3_description

epub_author
The author of the document. This is put in the Dublin Core metadata. It defaults to the author option.

epub_contributor
The name of a person, organization, etc. that played a secondary role in the creation of the content of an EPUB
Publication. The default value is 'unknown'.

New in version 1.4.
Changed in version 1.5: Renamed from epub3_contributor

epub_language
The language of the document. This is put in the Dublin Core metadata. The default is the Ianguage option or
"en' if unset.

epub_publisher
The publisher of the document. This is put in the Dublin Core metadata. You may use any sensible string, e.g.
the project homepage. The defaults to the author option.

epub_copyright
The copyright of the document. It defaults to the copyright option but can be set independently for epub
creation.

165 http://dublincore.org/

1.5. Configuration 95

http://dublincore.org/

Sphinx Documentation, Release 4.0.0+

epub_identifier
An identifier for the document. This is put in the Dublin Core metadata. For published documents this is the
ISBN number, but you can also use an alternative scheme, e.g. the project homepage. The default value is
"unknown'.

epub_scheme
The publication scheme for the epub_identifier. This is put in the Dublin Core metadata. For published
books the scheme is 'ISBN'. If you use the project homepage, 'URL' seems reasonable. The default value is
"unknown'.

epub_uid
A unique identifier for the document. This is put in the Dublin Core metadata. You may use a XML’s Name
format!6° string. You can’t use hyphen, period, numbers as a first character. The default value is 'unknown'.

epub_cover
The cover page information. This is a tuple containing the filenames of the cover image and the html template.
The rendered html cover page is inserted as the first item in the spine in content.opf. If the template filename
is empty, no html cover page is created. No cover at all is created if the tuple is empty. Examples:

epub_cover = ('_static/cover.png', 'epub-cover.html')
epub_cover = ('_static/cover.png', ''")
epub_cover = ()

The default value is ().
New in version 1.1.

epub_css_files
A list of CSS files. The entry must be a filename string or a tuple containing the filename string and the attributes
dictionary. For more information, see html_css_files.

New in version 1.8.

epub_guide
Meta data for the guide element of content.opf. This is a sequence of tuples containing the rype, the uri
and the title of the optional guide information. See the OPF documentation at http://idpf.org/epub for details.
If possible, default entries for the cover and toc types are automatically inserted. However, the types can be
explicitly overwritten if the default entries are not appropriate. Example:

epub_guide = (('cover', 'cover.html', u'Cover Page'),)

The default value is ().

epub_pre_files
Additional files that should be inserted before the text generated by Sphinx. It is a list of tuples containing the
file name and the title. If the title is empty, no entry is added to toc.ncx. Example:

epub_pre_files = [
('index.html', 'Welcome'),

]

The default value is [].

epub_post_files
Additional files that should be inserted after the text generated by Sphinx. It is a list of tuples containing the
file name and the title. This option can be used to add an appendix. If the title is empty, no entry is added to
toc.ncx. The default value is [].

166 https://www.w3.0rg/ TR/REC-xml/#NT-NameStartChar

96 Chapter 1. Using Sphinx

https://www.w3.org/TR/REC-xml/#NT-NameStartChar
https://www.w3.org/TR/REC-xml/#NT-NameStartChar
http://idpf.org/epub

Sphinx Documentation, Release 4.0.0+

epub_exclude_files
A list of files that are generated/copied in the build directory but should not be included in the epub file. The
default value is [].

epub_tocdepth
The depth of the table of contents in the file toc.ncx. It should be an integer greater than zero. The default
value is 3. Note: A deeply nested table of contents may be difficult to navigate.

epub_tocdup
This flag determines if a toc entry is inserted again at the beginning of its nested toc listing. This allows easier
navigation to the top of a chapter, but can be confusing because it mixes entries of different depth in one list. The
default value is True.

epub_tocscope
This setting control the scope of the epub table of contents. The setting can have the following values:

e 'default' —include all toc entries that are not hidden (default)
¢ 'includehidden' —include all toc entries
New in version 1.2.

epub_fix_images
This flag determines if sphinx should try to fix image formats that are not supported by some epub readers. At
the moment palette images with a small color table are upgraded. You need Pillow, the Python Image Library,
installed to use this option. The default value is False because the automatic conversion may lose information.

New in version 1.2.

epub_max_image_width
This option specifies the maximum width of images. If it is set to a value greater than zero, images with a width
larger than the given value are scaled accordingly. If it is zero, no scaling is performed. The default value is 0.
You need the Python Image Library (Pillow) installed to use this option.

New in version 1.2.

epub_show_urls
Control whether to display URL addresses. This is very useful for readers that have no other means to display
the linked URL. The settings can have the following values:

e 'inline' —display URLSs inline in parentheses (default)

» '"footnote' — display URLs in footnotes

* 'no' —do not display URLs
The display of inline URLs can be customized by adding CSS rules for the class 1ink-target.
New in version 1.2.

epub_use_index
If true, add an index to the epub document. It defaults to the html_use_index option but can be set indepen-
dently for epub creation.

New in version 1.2.

epub_writing_mode
It specifies writing direction. It can accept '"horizontal' (default) and 'vertical'

epub_writing_mode 'horizontal' 'vertical'
writing-mode '’ horizontal-tb vertical-rl

page progression left to right right to left

iBook’s Scroll Theme support | scroll-axis is vertical. | scroll-axis is horizontal.

167 https://developer.mozilla.org/en- US/docs/Web/CSS/writing-mode

1.5. Configuration 97

https://developer.mozilla.org/en-US/docs/Web/CSS/writing-mode

Sphinx Documentation, Release 4.0.0+

Options for LaTeX output

These options influence LaTeX output.

latex_engine

The LaTeX engine to build the docs. The setting can have the following values:
e 'pdflatex' — PDFLaTeX (default)
e 'xelatex' — XeLaTeX
e 'lualatex' — LuaLaTeX
e 'platex' —pLaTeX
e 'uplatex' —upLaTeX (default if languageis 'ja')

'pdflatex ' ‘s support for Unicode characters is limited.

Note: 2.0 adds to 'pdflatex' support in Latin language document of occasional Cyrillic or Greek letters or
words. This is not automatic, see the discussion of the Iatex_elements 'fontenc' key.

If your project uses Unicode characters, setting the engine to 'xelatex' or 'lualatex' and making sure to
use an OpenType font with wide-enough glyph coverage is often easier than trying to make 'pdflatex' work
with the extra Unicode characters. Since Sphinx 2.0 the default is the GNU FreeFont which covers well Latin,
Cyrillic and Greek.

Changed in version 2.1.0: Use xelatex (and LaTeX package xeCJK) by default for Chinese documents.
Changed in version 2.2.1: Use xelatex by default for Greek documents.

Changed in version 2.3: Add uplatex support.

Changed in version 4.0: uplatex becomes the default setting of Japanese documents.

Contrarily to MathJaX math rendering in HTML output, LaTeX requires some extra configuration to sup-
port Unicode literals in math: the only comprehensive solution (as far as we know) is to use 'xelatex' or
'lualatex' andtoadd r'\usepackage{unicode-math}' (e.g. viathe Iatex_elements 'preamble’ key).
You may prefer r' \usepackage[math-style=literal]{unicode-math}"' to keep a Unicode literal such as
a (U+03B1) for example as is in output, rather than being rendered as a.

latex_documents

This value determines how to group the document tree into LaTeX source files. It must be a list of tuples
(startdocname, targetname, title, author, theme, toctree_only), where the items are:

startdocname String that specifies the document name of the LaTeX file’s master document. All documents
referenced by the startdoc document in TOC trees will be included in the LaTeX file. (If you want to use
the default master document for your LaTeX build, provide your master_doc here.)

targetname File name of the LaTeX file in the output directory.

title LaTeX document title. Can be empty to use the title of the startdoc document. This is inserted as LaTeX
markup, so special characters like a backslash or ampersand must be represented by the proper LaTeX
commands if they are to be inserted literally.

author Author for the LaTeX document. The same LaTeX markup caveat as for fitle applies. Use \\and to
separate multiple authors, as in: 'John \\and Sarah' (backslashes must be Python-escaped to reach
LaTeX).

theme LaTeX theme. See latex_theme.

toctree_only Must be True or False. If true, the startdoc document itself is not included in the output, only the
documents referenced by it via TOC trees. With this option, you can put extra stuff in the master document
that shows up in the HTML, but not the LaTeX output.

98

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

New in version 1.2: In the past including your own document class required you to prepend the document class
name with the string “sphinx”. This is not necessary anymore.

New in version 0.3: The 6th item toctree_only. Tuples with 5 items are still accepted.

latex_logo
If given, this must be the name of an image file (relative to the configuration directory) that is the logo of the
docs. It is placed at the top of the title page. Default: None.

latex_toplevel_sectioning
This value determines the topmost sectioning unit. It should be chosen from 'part’', 'chapter' or 'section’.
The default is None; the topmost sectioning unit is switched by documentclass: sectionis used if documentclass
will be howto, otherwise chapter will be used.

Note that if LaTeX uses \part command, then the numbering of sectioning units one level deep gets off-sync
with HTML numbering, because LaTeX numbers continuously \chapter (or \section for howto.)

New in version 1.4.

latex_appendices
A list of document names to append as an appendix to all manuals.

latex_domain_indices
If true, generate domain-specific indices in addition to the general index. For e.g. the Python domain, this is the
global module index. Default is True.

This value can be a bool or a list of index names that should be generated, like for html_domain_indices.
New in version 1.0.

latex_show_pagerefs
If true, add page references after internal references. This is very useful for printed copies of the manual. Default
is False.

New in version 1.0.

latex_show_urls
Control whether to display URL addresses. This is very useful for printed copies of the manual. The setting can
have the following values:

* 'no' —do not display URLs (default)

e 'footnote' — display URLs in footnotes

e 'inline' —display URLs inline in parentheses
New in version 1.0.

Changed in version 1.1: This value is now a string; previously it was a boolean value, and a true value selected
the "inline' display. For backwards compatibility, True is still accepted.

latex_use_latex_multicolumn
The default is False: it means that Sphinx’s own macros are used for merged cells from grid tables. They allow
general contents (literal blocks, lists, blockquotes, ...) but may have problems if the tabularcolumns directive
was used to inject LaTeX mark-up of the type >{. .}, <{..}, @{. .} as column specification.

Setting to True means to use LaTeX’s standard \multicolumn; this is incompatible with literal blocks in the
horizontally merged cell, and also with multiple paragraphs in such cell if the table is rendered using tabulary.

New in version 1.6.

latex_use_xindy
If True, the PDF build from the LaTeX files created by Sphinx will use xindy (doc'®®) rather than makeindex
for preparing the index of general terms (from index usage). This means that words with UTF-8 characters will
get ordered correctly for the 1anguage.

1.5. Configuration 99

http://xindy.sourceforge.net/

Sphinx Documentation, Release 4.0.0+

* This option is ignored if Iatex_engineis 'platex' (Japanese documents; mendex replaces makeindex
then).

¢ The default is True for 'xelatex' or 'lualatex’' asmakeindex, if any indexed term starts with a non-
ascii character, creates .ind files containing invalid bytes for UTF-8 encoding. With 'lualatex' this
then breaks the PDF build.

¢ The default is False for 'pdflatex’' but True is recommended for non-English documents as soon as
some indexed terms use non-ascii characters from the language script.

Sphinx adds to xindy base distribution some dedicated support for using 'pdflatex' engine with Cyrillic
scripts. And whether with 'pdflatex' or Unicode engines, Cyrillic documents handle correctly the indexing
of Latin names, even with diacritics.

New in version 1.8.

latex_elements

New in version 0.5.

Its documentation has moved to LaTeX customization.

latex_docclass

A dictionary mapping 'howto' and 'manual' to names of real document classes that will be used as the base
for the two Sphinx classes. Default is to use 'article' for 'howto' and 'report' for 'manual’.

New in version 1.0.

Changed in version 1.5: In Japanese docs (1anguage is 'ja'), by default ' jreport' is used for "howto' and
' jsbook' for "'manual’.

latex_additional_files

A list of file names, relative to the configuration directory, to copy to the build directory when building LaTeX
output. This is useful to copy files that Sphinx doesn’t copy automatically, e.g. if they are referenced in custom
LaTeX added in latex_elements. Image files that are referenced in source files (e.g. via .. image::) are
copied automatically.

You have to make sure yourself that the filenames don’t collide with those of any automatically copied files.
New in version 0.6.

Changed in version 1.2: This overrides the files which is provided from Sphinx such as sphinx.sty.

latex_theme

The “theme” that the LaTeX output should use. It is a collection of settings for LaTeX output (ex. document
class, top level sectioning unit and so on).

As a built-in LaTeX themes, manual and howto are bundled.

manual A LaTeX theme for writing a manual. It imports the report document class (Japanese documents use
jsbook).

howto A LaTeX theme for writing an article. It imports the article document class (Japanese documents use
jreport rather). latex_appendices is available only for this theme.

It defaults to 'manual’.

New in version 3.0.

latex_theme_options

A dictionary of options that influence the look and feel of the selected theme.

New in version 3.1.

168 http://xindy.sourceforge.net/

100

Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

latex_theme_path
A list of paths that contain custom LaTeX themes as subdirectories. Relative paths are taken as relative to the
configuration directory.

New in version 3.0.

Options for text output

These options influence text output.

text_newlines
Determines which end-of-line character(s) are used in text output.

e 'unix': use Unix-style line endings (\n)

* 'windows': use Windows-style line endings (\r\n)

* 'native': use the line ending style of the platform the documentation is built on
Default: "'unix'.
New in version 1.1.

text_sectionchars
A string of 7 characters that should be used for underlining sections. The first character is used for first-level
headings, the second for second-level headings and so on.

The default is '*=-~"+"".
New in version 1.1.

text_add_secnumbers
A boolean that decides whether section numbers are included in text output. Default is True.

New in version 1.7.

text_secnumber_suffix
Suffix for section numbers in text output. Default: ". ". Setto" " to suppress the final dot on section numbers.

New in version 1.7.

Options for manual page output

These options influence manual page output.

man_pages
This value determines how to group the document tree into manual pages. It must be a list of tuples
(startdocname, name, description, authors, section), where the items are:

startdocname String that specifies the document name of the manual page’s master document. All documents
referenced by the startdoc document in TOC trees will be included in the manual file. (If you want to use
the default master document for your manual pages build, use your master_doc here.)

name Name of the manual page. This should be a short string without spaces or special characters. It is used to
determine the file name as well as the name of the manual page (in the NAME section).

description Description of the manual page. This is used in the NAME section.

authors A list of strings with authors, or a single string. Can be an empty string or list if you do not want to
automatically generate an AUTHORS section in the manual page.

section The manual page section. Used for the output file name as well as in the manual page header.

New in version 1.0.

1.5. Configuration 101

Sphinx Documentation, Release 4.0.0+

man_show_urls
If true, add URL addresses after links. Default is False.

New in version 1.1.

man_make_section_directory
If true, make a section directory on build man page. Default is True.

New in version 3.3.

Changed in version 4.0: The default is changed to False from True.

Options for Texinfo output

These options influence Texinfo output.

texinfo_documents
This value determines how to group the document tree into Texinfo source files. It must be a
list of tuples (startdocname, targetname, title, author, dir_entry, description, category,
toctree_only), where the items are:

startdocname String that specifies the document name of the the Texinfo file’s master document. All documents
referenced by the startdoc document in TOC trees will be included in the Texinfo file. (If you want to use
the default master document for your Texinfo build, provide your master_doc here.)

targetname File name (no extension) of the Texinfo file in the output directory.

title Texinfo document title. Can be empty to use the title of the startdoc document. Inserted as Texinfo markup,
so special characters like @ and {} will need to be escaped to be inserted literally.

author Author for the Texinfo document. Inserted as Texinfo markup. Use @* to separate multiple authors, as
in: 'John@*Sarah'.

dir_entry The name that will appear in the top-level DIR menu file.
description Descriptive text to appear in the top-level DIR menu file.
category Specifies the section which this entry will appear in the top-level DIR menu file.

toctree_only Must be True or False. If true, the startdoc document itself is not included in the output, only the
documents referenced by it via TOC trees. With this option, you can put extra stuff in the master document
that shows up in the HTML, but not the Texinfo output.

New in version 1.1.

texinfo_appendices
A list of document names to append as an appendix to all manuals.

New in version 1.1.

texinfo_domain_indices
If true, generate domain-specific indices in addition to the general index. For e.g. the Python domain, this is the
global module index. Default is True.

This value can be a bool or a list of index names that should be generated, like for html_domain_indices.
New in version 1.1.

texinfo_show_urls
Control how to display URL addresses.

* '"footnote' — display URLSs in footnotes (default)
* 'no' —do not display URLs

e 'inline' — display URLSs inline in parentheses

102 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

New in version 1.1.

texinfo_no_detailmenu
If true, do not generate a @detailmenu in the “Top” node’s menu containing entries for each sub-node in the
document. Default is False.

New in version 1.2.

texinfo_elements

A dictionary that contains Texinfo snippets that override those Sphinx usually puts into the generated .texi
files.

» Keys that you may want to override include:

'paragraphindent' Number of spaces to indent the first line of each paragraph, default 2. Specify 0 for
no indentation.

'exampleindent’' Number of spaces to indent the lines for examples or literal blocks, default 4. Specify
0 for no indentation.

'preamble' Texinfo markup inserted near the beginning of the file.

'copying' Texinfo markup inserted within the @copying block and displayed after the title. The default
value consists of a simple title page identifying the project.

» Keys that are set by other options and therefore should not be overridden are:
'author' 'body' 'date' 'direntry' 'filename' 'project' 'release' 'title'

New in version 1.1.

Options for QtHelp output

These options influence qthelp output. As this builder derives from the HTML builder, the HTML options also apply
where appropriate.

qthelp_basename
The basename for the gthelp file. It defaults to the project name.

qthelp_namespace
The namespace for the gthelp file. It defaults to org. sphinx.<project_name>.<project_version>.

qthelp_theme
The HTML theme for the gthelp output. This defaults to 'nonav'.

qthelp_theme_options
A dictionary of options that influence the look and feel of the selected theme. These are theme-specific. For the
options understood by the builtin themes, see this section.

Options for the linkcheck builder

linkcheck_ignore
A list of regular expressions that match URIs that should not be checked when doing a 1inkcheck build. Ex-
ample:

linkcheck_ignore = [r'http://localhost:\d+/"]

New in version 1.1.

linkcheck_request_headers
A dictionary that maps baseurls to HTTP request headers.

1.5. Configuration 103

Sphinx Documentation, Release 4.0.0+

The key is a URL base string like "https://sphinx-doc.org/". To specify headers for other hosts, "*" can
be used. It matches all hosts only when the URL does not match other settings.

The value is a dictionary that maps header name to its value.

Example:

linkcheck_request_headers = {
"https://sphinx-doc.org/": {
"Accept": "text/html",
"Accept-Encoding": "utf-8",
1,
many g
"Accept": "text/html,application/xhtml+xml",

}

New in version 3.1.

linkcheck_retries
The number of times the linkcheck builder will attempt to check a URL before declaring it broken. Defaults to
1 attempt.

New in version 1.4.

linkcheck_timeout
A timeout value, in seconds, for the linkcheck builder. The default is to use Python’s global socket timeout.

New in version 1.1.

linkcheck_workers
The number of worker threads to use when checking links. Default is 5 threads.

New in version 1.1.

linkcheck_anchors
If true, check the validity of #anchors in links. Since this requires downloading the whole document, it’s
considerably slower when enabled. Default is True.

New in version 1.2.

linkcheck_anchors_ignore
A list of regular expressions that match anchors Sphinx should skip when checking the validity of anchors in
links. This allows skipping anchors that a website’s JavaScript adds to control dynamic pages or when triggering
an internal REST request. Defaultis ["A!"].

Note: If you want to ignore anchors of a specific page or of pages that match a specific pattern (but still
check occurrences of the same page(s) that don’t have anchors), use 1inkcheck_ignore instead, for example
as follows:

linkcheck_ignore = [
'http://www.sphinx-doc.org/en/1.7/intro.html#’

]

New in version 1.5.

linkcheck_auth
Pass authentication information when doing a 1inkcheck build.

A list of (regex_pattern, auth_info) tuples where the items are:

104 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

regex_pattern A regular expression that matches a URI

auth_info Authentication information to use for that URI. The value can be anything that is understood by the
requests library (see requests Authentication for details).

The 1inkcheck builder will use the first matching auth_info value it can find in the Iinkcheck_auth list, so
values earlier in the list have higher priority.

Example:

linkcheck_auth = [
('https://foo\.yourcompany\.com/.+"', ('johndoe', 'secret')),
('"https://.+\.yourcompany\.com/.+"', HTTPDigestAuth(...)),

]

New in version 2.3.

linkcheck_rate_limit_timeout
The 1linkcheck builder may issue a large number of requests to the same site over a short period of time. This
setting controls the builder behavior when servers indicate that requests are rate-limited.

16

If a server indicates when to retry (using the Retry-After'%” header), 1inkcheck always follows the server indi-

cation.

Otherwise, 1linkcheck waits for a minute before to retry and keeps doubling the wait time between attempts
until it succeeds or exceeds the 1inkcheck_rate_limit_timeout. By default, the timeout is 5 minutes.

New in version 3.4.

Options for the XML builder

xml_pretty
If true, pretty-print the XML. Default is True.

New in version 1.2.

Options for the C domain

c_id_attributes
A list of strings that the parser additionally should accept as attributes. This can for example be used when
attributes have been #define d for portability.

New in version 3.0.

c_paren_attributes
A list of strings that the parser additionally should accept as attributes with one argument. That is, if
my_align_as is in the list, then my_align_as(X) is parsed as an attribute for all strings X that have balanced
braces ((), [1, and {}). This can for example be used when attributes have been #define d for portability.

New in version 3.0.

c_allow_pre_v3
A boolean (default False) controlling whether to parse and try to convert pre-v3 style type directives and type
roles.

New in version 3.2.

Deprecated since version 3.2: Use the directives and roles added in v3.

169 https://tools.ietf.org/html/rfc723 1#section-7.1.3

1.5. Configuration 105

https://tools.ietf.org/html/rfc7231#section-7.1.3

Sphinx Documentation, Release 4.0.0+

c_warn_on_allowed_pre_v3
A boolean (default True) controlling whether to warn when a pre-v3 style type directive/role is parsed and
converted.

New in version 3.2.

Deprecated since version 3.2: Use the directives and roles added in v3.

Options for the C++ domain

cpp_index_common_prefix
A list of prefixes that will be ignored when sorting C++ objects in the global index. For example
['awesome_lib::'].

New in version 1.5.

cpp_id_attributes
A list of strings that the parser additionally should accept as attributes. This can for example be used when
attributes have been #define d for portability.

New in version 1.5.

cpp_paren_attributes
A list of strings that the parser additionally should accept as attributes with one argument. That is, if
my_align_as is in the list, then my_align_as(X) is parsed as an attribute for all strings X that have balanced
braces ((), [], and {}). This can for example be used when attributes have been #define d for portability.

New in version 1.5.

Example of configuration file

test documentation build configuration file, created by
sphinx-quickstart on Sun Jun 26 00:00:43 2016.

This file is execfile()d with the current directory set to its
containing dir.

Note that not all possible configuration values are present in this
autogenerated file.

All configuration values have a default; values that are commented out
serve to show the default.

R R R R R R TR R R R S

If extensions (or modules to document with autodoc) are in another directory,
add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.

import os
import sys
sys.path.insert (0, os.path.abspath('."))

HoR R R R W W

H

-- General configuration --------—-——————————"—————————————————
If your documentation needs a minimal Sphinx version, state it here.

'

needs_sphinx = '1.0

(continues on next page)

106 Chapter 1. Using Sphinx

Sphinx Documentation, Release 4.0.0+

(continued from previous page)

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.

extensions = []

Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

The suffix(es) of source filenames.
You can specify multiple suffix as a list of string:

#
source_suffix = ['.rst', '.md']
source_suffix = '.rst'

The encoding of source files.
#
source_encoding = 'utf-8-sig’

The master toctree document.
master_doc = 'index'

General information about the project.
project = u'test'

copyright = u'2016, test'

author = u'test’

The version info for the project you're documenting,